精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点E的中点,连接AF交过E的切线于点DAB的延长线交该切线于点C,若∠C30°,⊙O的半径是2,则图形中阴影部分的面积是_____

【答案】

【解析】

首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DEAD的长,利用SADES扇形FOE=图中阴影部分的面积求出即可.

解:连接OEOFEF

DE是切线,

OEDE

∵∠C30°OBOE2

∴∠EOC60°OC2OE4

CEOC×sin60°=

∵点E是弧BF的中点,

∴∠EAB=∠DAE30°

FE是半圆弧的三等分点,

∴∠EOF=∠EOB=∠AOF60°

OEAD,∠DAC60°

∴∠ADC90°

CEAE

DE

ADDE×tan60°=

SADE

∵△FOEAEF同底等高,

∴△FOEAEF面积相等,

∴图中阴影部分的面积为:SADES扇形FOE

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图位置,继续绕右下角的顶点按顺时针方向旋转90°至图位置,以此类推,这样连续旋转2017次.若AB=4AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )

A. 2017π B. 2034π C. 3024π D. 3026π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,矩形ABCD中,过对角线BD中点O的直线分别交ABCD边于点EF

1)求证:四边形BEDF是平行四边形;

2)只需添加一个条件,即______,可使四边形BEDF为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点AB在双曲线y= (x0)上,BCx轴交于点D.若点A的坐标为(12),则点B的坐标为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进AB两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.

1)求AB两种型号汽车的进货单价;

2)销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系yA=﹣x+20B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系yB=﹣x+14A型汽车的售价比B型汽车的售价高2万元/台.问AB两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2

(2)能否使所围矩形场地的面积为810m2 ,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB AB 之间的距离为 2 CD 是直线两个动点(点 C D 点的左侧),且 AB=CD=5.连接 ACBCBD,将ABC 沿 BC 折叠得到A′BC.若以 A′CBD 为顶点的四边形为矩形,则此矩形相邻两边之和为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

ABC中,AC=BC,∠ACB,点D为直线BC上一动点,过点DDFACAB于点F,将AD绕点D顺时针旋转α得到ED,连接BE

如图(1),当α=90°时,试猜想:

AFBE的数量关系是   ;②∠ABE=   

(2)拓展探究

如图(2),当0°<α<90°时,请判断AFBE的数量关系及∠ABE的度数,并说明理由.

(3)解决问题

如图(3),在ABC中,AC=BCAB=8,∠ACB,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:

已知:如图,直线l和直线l外一点A

求作:直线AP,使得APl

作法:如图

在直线l上任取一点BABl不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C

连接ACAB,延长BA到点D

作∠DAC的平分线AP

所以直线AP就是所求作的直线

根据小星同学设计的尺规作图过程,

1)使用直尺和圆规,补全图形(保留作图痕迹)

2)完成下面的证明

证明:∵ABAC

∴∠ABC=∠ACB   (填推理的依据)

∵∠DAC是△ABC的外角,

∴∠DAC=∠ABC+ACB   (填推理的依据)

∴∠DAC2ABC

AP平分∠DAC

∴∠DAC2DAP

∴∠DAP=∠ABC

APl   (填推理的依据)

查看答案和解析>>

同步练习册答案