Èçͼ£¬ÒÑÖªy=
1
2
x2+px+q
£¨q¡Ù0£©ÓëÖ±Ïßy=x½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬OA¾«Ó¢¼Ò½ÌÍø=BO£¬BC¡ÎxÖᣮ
£¨1£©ÇópºÍqµÄÖµ£»
£¨2£©ÉèD¡¢EÊÇÏ߶ÎABÉÏÒìÓÚA¡¢BµÄÁ½¸ö¶¯µã£¨µãEÔÚµãDµÄÓÒÉÏ·½£©£¬DE=
2
£¬¹ýD×÷yÖáµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚF£®
¢ÙÉèµãDµÄºá×ø±êΪt£¬¡÷EDFµÄÃæ»ýΪS£¬ÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ¼°×Ô±äÁ¿tµÄÈ¡Öµ·¶Î§£»
¢ÚÓÖ¹ýµãE×÷yÖáµÄƽÐÐÏߣ¬½»Å×ÎïÏßÓÚG£¬ÊÔÎÊÄܲ»ÄÜÊʵ±Ñ¡ÔñµãDµÄλÖã¬Ê¹ËıßÐÎDFGEÊÇƽÐÐËıßÐΣ¿Èç¹ûÄÜ£¬Çó³ö´ËʱµãDµÄ×ø±ê£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâµÃC£¨0£¬q£©£¬ÓÖÓÉBC¡ÎxÖᣬÇÒµãBÔÚÖ±Ïßy=xÉÏ£¬¿ÉÇóµÃµãBµÄ×ø±ê£¬ÓÉOA=BOÖª£¬µãA¡¢B¹ØÓÚÔ­µã¶Ô³Æ£¬ÇóµÃµãAµÄ×ø±ê£¬È»ºó´úÈ뺯Êý½âÎöʽ£¬¼´¿ÉÇóµÃpºÍqµÄÖµÓë´Ë¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©¢ÙÓɵãDÖ±Ïßx=tºÍy=xÉÏ£¬¿ÉÇóµÃµãDµÄ×ø±ê£¬¶øµãFÔÚÖ±Ïßx=tÉÏ£¬ÓÖÔÚÅ×ÎïÏßy=
1
2
x2+x-2ÉÏ£¬¼´¿ÉµÃµãFµÄ×ø±ê£¬È»ºó¹ýµãE×÷EH¡ÍDFµÄÑÓ³¤ÏßÓÚH£¬ÓÉDE=
2
¿ÉÖª£¬EH=1£¬S=
1
2
DF•EH£¬¼´¿ÉÇóµÃ´ð°¸£»
¢ÚÒ×ÖªE£¨t+1£¬t+1£©£¬¶øµãGÔÚÖ±Ïßx=t+1ÉÏ£¬ÓÖÔÚÅ×ÎïÏßy=
1
2
x2+x-2ÉÏ£¬¼´¿ÉÖªµãGµÄ×ø±êÓëEGµÄ³¤£¬ÈôËıßÐÎDFGEÊÇƽÐÐËıßÐΣ¬ÔòEG=DF£¬¼´¿ÉÇóµÃtµÄÖµ£¬Ôò¿ÉµÃÂú×ãÌõ¼þµÄµãD´æÔÚ£¬Æä×ø±êΪ£¨-
1
2
£¬-
1
2
£©£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃC£¨0£¬q£©£¬
¡ßBC¡ÎxÖᣬÇÒµãBÔÚÖ±Ïßy=xÉÏ£¬
ÓÉy=
1
2
x2+px+q£¬¿ÉÖª£¬µãBµÄ×ø±êΪ£¨q£¬q£©£¬
ÓÉOA=BOÖª£¬µãA¡¢B¹ØÓÚÔ­µã¶Ô³Æ£¬
¡àµãAµÄ×ø±êΪ£¨-q£¬-q£©£¬
¡à
1
2
q2+pq+q=q
1
2
(-q)2+p(-q)+q=-q
£¬
½âµÃ£ºp=1£¬q=-2£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=
1
2
x2+x-2£»

£¨2£©¢Ù¡ßµãDÖ±Ïßx=tºÍy=xÉÏ£¬
ÓÉ£¨1£©¿ÉÖªµÀµãDµÄ×ø±êΪ£¨t£¬t£©£¬
¶øµãFÔÚÖ±Ïßx=tÉÏ£¬ÓÖÔÚÅ×ÎïÏßy=
1
2
x2+x-2ÉÏ£¬
¡àµãFµÄ×ø±êΪ£¨t£¬
1
2
t2+t-2£©£¬
¹ýµãE×÷EH¡ÍDFµÄÑÓ³¤ÏßÓÚH£¬ÓÉDE=
2
¿ÉÖª£¬EH=1£¬
DF=t-£¨
1
2
t2+t-2£©=-
1
2
t2+2£¬
¡àS=
1
2
DF•EH=
1
2
£¨-
1
2
t2+2£©¡Á1=-
1
4
t2+1£®
½â·½³Ì×飺
y=
1
2
x2+x-2
y=x
£¬
½âµÃ£º
x1=2
y1=2
£¬
x2=-2
y2=-2

¡àµãA£¨2£¬2£©£¬B£¨-2£¬-2£©£¬
¡àtµÄÈ¡Öµ·¶Î§Îª-2£¼t£¼1£¬ÇÒµ±t=0ʱ£¬SÓÐ×î´óÖµ1£®
¢ÚÒ×ÖªE£¨t+1£¬t+1£©£¬¶øµãGÔÚÖ±Ïßx=t+1ÉÏ£¬ÓÖÔÚÅ×ÎïÏßy=
1
2
x2+x-2ÉÏ£¬
¿ÉÖªµãGµÄ×ø±êΪ£¨t+1£¬
1
2
£¨t+1£©2+£¨t+1£©-2£©£¬
¡àEG=£¨t+1£©-[
1
2
£¨t+1£©2+£¨t+1£©-2]=-
1
2
t2-t-
3
2
£¬
ÈôËıßÐÎDFGEÊÇƽÐÐËıßÐΣ¬ÔòEG=DF£¬¼´-
1
2
t2-t-
3
2
=-
1
2
t2+2£¬
½âµÃ£ºt=-
1
2
£®
¡àÂú×ãÌõ¼þµÄµãD´æÔÚ£¬Æä×ø±êΪ£¨-
1
2
£¬-
1
2
£©£®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ·½³Ì˼ÏëÓëÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
m
x
£¨x£¾0£©µÄͼÏóÓëÒ»´Îº¯Êýy=-
1
2
x+
5
2
µÄͼÏó½»ÓÚA¡¢BÁ½µã£¬µãCµÄ×ø±êΪ£¨1£¬
1
2
£©£¬Á¬½ÓAC£¬ACƽÐÐÓÚyÖᣮ
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ¼°µãBµÄ×ø±ê£»
£¨2£©ÏÖÓÐÒ»¸öÖ±½ÇÈý½Ç°å£¬ÈÃËüµÄÖ±½Ç¶¥µãPÔÚ·´±ÈÀýº¯ÊýͼÏóÉϵÄA¡¢BÖ®¼äµÄ²¿·Ö»¬¶¯£¨²»ÓëA¡¢BÖغϣ©£¬Á½Ö±½Ç±ßʼÖÕ·Ö±ðƽÐÐÓÚxÖá¡¢yÖᣬÇÒÓëÏ߶ÎAB½»ÓÚM¡¢NÁ½µã£¬ÊÔÅжÏPµãÔÚ»¬¶¯¹ý³ÌÖС÷PMNÊÇ·ñÓë¡÷CAB×ÜÏàËÆ£¬¼òҪ˵Ã÷ÅжÏÀíÓÉ£®¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±½Ç×ø±êϵÄÚÓÐÒ»ÌõÖ±ÏߺÍÒ»ÌõÇúÏߣ¬ÕâÌõÖ±ÏߺÍxÖá¡¢yÖáÕý°ëÖá·Ö±ð½»ÓÚµãAºÍµãB£¬ÇÒOA=OB=1£®ÕâÌõÇúÏßÊǺ¯Êýy=
12x
µÄͼÏóÔÚµÚÒ»ÏóÏÞµÄÒ»¸ö·ÖÖ§£¬µãPÊÇÕâÌõÇúÏßÉÏÈÎÒ⾫Ӣ¼Ò½ÌÍøÒ»µã£¬ËüµÄ×ø±êÊÇ£¨a¡¢b£©£¬ÓɵãPÏòxÖá¡¢yÖáËù×÷µÄ´¹ÏßPM¡¢PN£¬´¹×ãÊÇM¡¢N£¬Ö±ÏßAB·Ö±ð½»PM¡¢PNÓÚµãE¡¢F£®
£¨1£©·Ö±ðÇó³öµãE¡¢FµÄ×ø±ê£¨ÓÃaµÄ´úÊýʽ±íʾµãEµÄ×ø±ê£¬ÓÃbµÄ´úÊýʽ±íʾµãFµÄ×ø±ê£¬Ö»Ðëд³ö½á¹û£¬²»ÒªÇóд³ö¼ÆËã¹ý³Ì£©£»
£¨2£©Çó¡÷OEFµÄÃæ»ý£¨½á¹ûÓú¬a¡¢bµÄ´úÊýʽ±íʾ£©£»
£¨3£©·Ö±ð¼ÆËãAFÓëBEµÄÖµ£¨½á¹ûÓú¬a¡¢bµÄ´úÊýʽ±íʾ£©£»
£¨4£©¡÷AOFÓë¡÷BOEÊÇ·ñÒ»¶¨ÏàËÆ£¬ÇëÓèÒÔÖ¤Ã÷£»Èç¹û²»Ò»¶¨ÏàËÆ»òÒ»¶¨²»ÏàËÆ£¬¼òҪ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªA1£¬A2£¬A3£¬¡­£¬AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=¡­=AnAn+1=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­£¬An+1×÷xÖáµÄ´¹Ïß½»Ò»´Îº¯Êýy=
12
x
µÄͼÏóÓÚµãB1£¬B2£¬B3£¬¡­£¬Bn+1£¬Á¬½ÓA1B2£¬B1A2£¬A2B3£¬B2A3£¬¡­£¬AnBn+1£¬BnAn+1ÒÀ´Î²úÉú½»µãP1£¬P2£¬P3£¬¡­£¬Pn£¬ÔòPnµÄ×ø±êÊÇ
 
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¡ÏAOB=40¡ã£¬¡ÏBOC=80¡ã£¬ÓÖOD£¬OE·Ö±ðÊÇ¡ÏAOBºÍ¡ÏBOCµÄƽ·ÖÏߣ®
£¨1£©Í¼ÖÐÓÐ
10
10
¸ö½Ç£»
£¨2£©Çó¡ÏDOEµÄ¶ÈÊý£»
£¨3£©Éè¡ÏAOB=x£¬¡ÏBOC=y£¬¡ÏDOEµÄ¶ÈÊýΪ
1
2
x+
1
2
y
1
2
x+
1
2
y
£¨Óú¬x£¬yµÄ´úÊýʽ±íʾ£©£®
£¨4£©Í¨¹ý£¨2£©¡¢£¨3£©µÄ¼ÆË㣬²ÂÏë¡ÏDOE=
1
2
1
2
¡ÏAOC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl1£¬l2µÄ½»µã×ø±ê£¬ÊÇÏÂÁÐij·½³Ì×éµÄ½â£¬ÔòÖ»ÄÜÊÇ·½×飨¡¡¡¡£©µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸