精英家教网 > 初中数学 > 题目详情
已知:抛物线与x轴有两个不同的交点。
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长。

解:(1)
依题意,得
∴k的取值范围是k且k≠1,①;
(2)解方程3x=kx-1,得
∵方程3x=kx-1的解是负数,
∴3-k>0,∴k<3,②,
综合①②,及k为整数,可得k=2,
∴抛物线的解析式为y=x2+4x;
(3)如图,设最大正方形ABCD的边长为m,
则B、C两点的纵坐标为-m,
且由对称性可知:B、C两点关于抛物线对称轴对称,
∵抛物线的对称轴为:x=-2,
∴点C的坐标为
∵C点在抛物线上,

整理,得
(舍负),

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线与x轴交于A(-2,0)、B(4,0),与y轴交于C(0,4).
(1)求抛物线顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,抛物线数学公式与x轴正半轴交于A、B两点(A点在B点左边),且AB=4.
(1)求k值;
(2)该抛物线与直线数学公式交于C、D两点,求S△ACD
(3)该抛物线上是否存在不同于A点的点P,使S△PCD=S△ACD?若存在,求出P点坐标.
(4)若该抛物线上有点P,使S△PCD=tS△ACD,抛物线上满足条件的P点有2个,3个,4个时,分别直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线与x轴交于A(-2,0)、B(4,0),与y轴交于C(0,4).
(1)求抛物线顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?

查看答案和解析>>

科目:初中数学 来源:2011年北京市石景山区中考数学二模试卷(解析版) 题型:解答题

已知:抛物线与x轴交于A(-2,0)、B(4,0),与y轴交于C(0,4).
(1)求抛物线顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?

查看答案和解析>>

同步练习册答案