精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=
3
,求⊙O的半径.
(1)证明:连接OT;
∵PQ切⊙O于T,
∴OT⊥PQ,
又∵AC⊥PQ,
∴OTAC,
∴∠TAC=∠ATO;
又∵OT=OA,
∴∠ATO=∠OAT,
∴∠OAT=∠TAC,
即AT平分∠BAC.

(2)过点O作OM⊥AC于M,
∴AM=MD=
AD
2
=1;
又∠OTC=∠ACT=∠OMC=90°,
∴四边形OTCM为矩形,
∴OM=TC=
3

∴在Rt△AOM中,
AO=
OM2+AM2
=
3+1
=2

即⊙O的半径为2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点E,连结EB、ED,∠CBD=∠E.
(1)求证:BC是⊙O的切线;
(2)若∠E=30°,BC=
4
3
3
,求阴影部分的面积.(计算结果精确到0.1)(参考数值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的割线PAB交⊙O于点A,B,PA=14cm,AB=10cm,PO=20cm,则⊙O的半径是(  )
A.8cmB.10cmC.12cmD.14cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲:如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O的切线.

乙:已知关于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)证明:这个方程有两个不相等的实根
(2)如果这个方程的两根分别为x1,x2,且(x1-5)(x2-5)=5m,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(教材变式题)如图所示,在△ABC中,AB=6,AC=8,∠BAC=60°,以BC边上一点作⊙O分别与AB,AC边相切,求⊙O的半径r.

查看答案和解析>>

同步练习册答案