【题目】如图,在△ABC中,A点坐标为(4,3),B点坐标为(-1,4),C点坐标为(-3,1).
(1)在图中画出△ABC关于x轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.
(2)在x轴上画出点P,使PA+PC最小.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(2,3),则经过第2018次变换后所得的A点坐标是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形纸片中, ,折叠纸片,使得点落在边上的点处,折痕为,点分别在边和上,当点恰好是边的中点时,点与点重合,若在折叠过程中,则等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D,E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=9cm,DE=3cm,则BC的长为 ( )
A.12cmB.11cmC.9cmD.6cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.
填空:
①∠AEC的度数为 ;
②线段AE、BD之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC= °; ②请直接写出点D到PC的距离为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-5ax+4a与x轴相交于点A,B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“网络红包”是互联网运营商、商家通过组织互联网线上活动、派发红包的互联网工具,是朋友间互道祝福的表达形式之一.“网络红包”春节活动已经逐渐深入到大众的生活中,得到了人们较为广泛的关注.根据某咨询公司(2018年中国春节“网络红包”专题调查报告》显示:在接受调查的8万名网民中,对“网络红包”春节话动了解程度的占比方面,“较为了解”和“很了解”的网民共占比64%,分别占比36%和28%.在“不了解”和“只了解一两个“的受访网民中,“不了解”的网民人数比“只了解一两个”的网民人数多25%.如图是该咨询公司绘制的“中国网民关于‘网络红包’春节活动了解情况调查”统计图(不完整).
请根据以上信息解答下列问题:
(1)在受访的网民中,“不了解”和“只了解一两个”的网民人数共有 万人,其中“不了解”的网民人数是 万人;
(2)请将扇形统计图补充完整;
(3)2017除夕晚上小聪和爸爸、妈妈一起玩微信抢红包游戏,他们约定由爸爸在家人微信群中先后发两次“拼手气红包”,每次发放的红包数是3个,每个红包抽到的金额随机(每两个红包的金额都不相等),每次谁抽到红包的金额最大谁就是“手气最佳”者,求两次游戏中小聪都能获得“手气最佳”的概率为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com