精英家教网 > 初中数学 > 题目详情
如图,EC是⊙O的直径,且EC=2,作BC⊥AC于C,使BC=2,过B作⊙O的切线BA交CE的延长线于A,切点为D.
①求证:AD•AB=AO•AC;
②求AE及AD的长.
①证明:连接OD,
∵AB是⊙O的切线,
∴OD⊥AB,
∴∠ADO=90°,
∵BC⊥AC,
∴∠C=90°,
∴∠ADO=∠C,
∵∠A是公共角,
∴△AOD△ABC,
∴AD:AC=AO:AB,
∴AD•AB=AO•AC;

②设AD=x,AE=y,
∵EC是⊙O的直径,且EC=2,BC=2,
∴OE=OD=OC=1,
∵△AOD△ABC,
∴AD:AC=AO:AB=OD:BC=1:2,
∵AB与BC是⊙O的切线,
∴BD=BC=2,
x
y+2
=
1
2
y+1
x+2
=
1
2

解得:x=
4
3
,y=
2
3

∴AD=
4
3
,AE=
2
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
求证:AC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D在AC上,以AD为直径的⊙O恰与边BC切于E,且AE平分∠BAC,试判断
△ABC的形状,并加以说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,半径为6的⊙M与x轴相切,与y轴相交于A、B两点,OA=AB,则圆心M的坐标为(  )
A.(-6,6)B.(-4,6)C.(-2
10
,6)
D.(-4
2
,6)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O和不在⊙O上的一点P,过P直线交⊙O于A、B点,若PA•PB=4,OP=5,则⊙O的半径为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图PA是△ABC的外接圆O的切线,A是切点,PDAC,且PD与AB、AC分别相交于E、D.
求证:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知⊙O的直径AB与弦AC的夹角∠CAB=27°,过点C作⊙O的切线交AB延长线于点D,则∠ADC的度数为(  )
A.54°B.42°C.36°D.27°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
求证:DE是⊙O的切线.

查看答案和解析>>

同步练习册答案