精英家教网 > 初中数学 > 题目详情
3.若菱形的两条对角线长分别为10cm和24cm,则顺次连接这个菱形四条边的中点所得的四边形的面积是60cm2

分析 先根据中点可知:HG是△BDC的中位线,得平行相似,则S△CHG=$\frac{1}{4}$S△DBC,同理得S△AEF=$\frac{1}{4}$S△BAD
S△DEH=$\frac{1}{4}$S△ADC,S△BFG=$\frac{1}{4}$S△BAC,则S△CHG+S△AEF+S△DEH+S△BFG=$\frac{1}{2}$S四边形ABCD,代入计算即可.

解答 解:菱形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,
∴HG是△BDC的中位线,
∴HG∥BD,
∴△CHG∽△CDB,
∴S△CHG=$\frac{1}{4}$S△DBC
同理S△AEF=$\frac{1}{4}$S△BAD
∴S△CHG+S△AEF=$\frac{1}{4}$S△DBC+$\frac{1}{4}$S△BAD=$\frac{1}{4}$S四边形ABCD
同理S△DEH+S△BFG=$\frac{1}{4}$S四边形ABCD
∴S△CHG+S△AEF+S△DEH+S△BFG
=$\frac{1}{4}$S四边形ABCD+$\frac{1}{4}$S四边形ABCD
=$\frac{1}{2}$S四边形ABCD
∴S中点四边形EFGH=$\frac{1}{2}$S四边形ABCD=$\frac{1}{2}$×$\frac{1}{2}$×10×24=60;
故答案为:120.

点评 本题考查了中点四边形和菱形的性质,运用三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;可知平行相似且面积比是相似比的平方,从而得出中点四边形的面积是菱形面积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.将一副三角板如图摆放,若∠BAC=31°45′,则∠EAD的度数是31°45′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若S四边形AEOH=4,S四边形BFOE=5,S四边形CGOF=6,则S四边形DHOG=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列说法:
①三点确定一个圆;
②垂直于弦的直径平分弦;
③三角形的内心到三条边的距离相等;
④圆的切线垂直于经过切点的半径.
其中正确的个数是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式(组),并将解集表示在数轴上:
(1)$\frac{2x-1}{3}$-4<-$\frac{x+4}{2}$
(2)x-(3x-1)≤x+2
(3)$\left\{\begin{array}{l}5x-2>3(x+1)\\ \frac{1}{2}x-1≥7-\frac{3}{2}x\end{array}\right.$
(4)$\left\{\begin{array}{l}\frac{1}{2}x+1<2(x-1)\\ \frac{x}{3}>\frac{x+2}{5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为(  )
A.36°B.44°C.46°D.54°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知抛物线y=ax2+bx+c与双曲线y=$\frac{{k}^{2}}{x}$有三个交点A(-3,m),B(-1,n),C(2,p),则不等式ax3+bx2+cx-k2>0的解集为-3<x<-1或x>2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4$\sqrt{2}$或x≥8.

查看答案和解析>>

同步练习册答案