精英家教网 > 初中数学 > 题目详情
8.解不等式组:$\left\{\begin{array}{l}{\frac{x-1}{2}≥\frac{2x-5}{3}}\\{3x>5+2(x-1)}\end{array}\right.$并把解集在数轴上表示出来.

分析 先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.

解答 解:$\left\{\begin{array}{l}{\frac{x-1}{2}≥\frac{2x-5}{3}①}\\{3x>5+2(x-1)②}\end{array}\right.$
∵解不等式①,得:x≤7
解不等式②,得:x>3,
∴原不等式组的解集为3<x≤7,
把不等式的解集在数轴上表示为:

点评 本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=-$\frac{4}{x}$
(x<0)交于点P(-1,n),且F是PE的中点.
(1)求直线l的解析式;
(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),
①当a为何值时,△ABP是以点P为直角顶点的直角三角形?
②当a为何值时,PA=PB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.将两个等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°,AB=BC,AD=AE)如图放置在一起,点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:
①AC垂直平分DE;
②CDE为等边三角形;
③tan∠BCD=$\frac{AB}{BE}$;
④$\frac{{S}_{△EBC}}{{S}_{△EHC}}$=$\frac{\sqrt{3}}{3}$
正确的结论是(  )
A.只有①②B.只有③④C.只有①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.小明有两双不同颜色的拖鞋放在床前,拖鞋分左右脚.他半夜起床抹黑穿拖鞋,则他左右脚穿对同颜色鞋子的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,求警示牌的高CD为多少米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=$\frac{k}{x}$的图象恰好经过斜边A′B的中点C,S△ABO=16,tan∠BAO=2,则k的值为(  )
A.20B.22C.24D.26

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:经过A,B,D三点的抛物线的解析式是y=-$\frac{1}{4}$x2-$\frac{3}{2}$x-2;
(2)已知点F在(1)中的抛物线的对称轴上,求点F到点B,D的距离之差的最大值;
(3)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(4)如图2,当点P在线段AB上移动时,设P点坐标为(x,-2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而增大时所对应的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知△ABC,求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求:尺规作图,保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线y=k1x(x≥0)与双曲线y=$\frac{k_2}{x}$(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.
(1)求k1与k2的值;
(2)求直线PC的表达式;
(3)直接写出线段AB扫过的面积.

查看答案和解析>>

同步练习册答案