精英家教网 > 初中数学 > 题目详情

【题目】如图所示C为线段AE上一动点(不与点AE重合),AE同侧分别作正△ABC和正△CDEADBE交于点OADBC交于点PBECD交于点Q连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形其中正确的是(  )

A. ①②③④B. ②③④C. ①③④D. ①②③

【答案】A

【解析】

由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.

∵△ABCCDE是正三角形,
AC=BC,CD=CE,ACB=DCE=60°,
∵∠ACD=ACB+BCD,BCE=DCE+BCD,
∴∠ACD=BCE,
∴△ADC≌△BEC(SAS),故①正确,
AD=BE,故②正确;
∵△ADC≌△BEC,
∴∠ADC=BEC,
∴∠AOB=DAE+AEO=DAE+ADC=DCE=60°,故③正确;
CD=CE,DCP=ECQ=60°,ADC=BEC,
∴△CDP≌△CEQ(ASA).
CP=CQ,
∴∠CPQ=CQP=60°,
∴△CPQ是等边三角形,故④正确;
故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】凸四边形的四个顶点满足:每一个顶点到其他三个顶点距离之积都相等.则四边形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,若动点从点开始,按的路径运动一周,且速度为每秒,设运动的时间为秒.

)求为何值时,的周长分成相等的两部分

)求为何值时,的面积分成相等的两部分;并求此时的长.

)求为何值时,为等腰三角形?(请直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°∠A=30°

1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);

2)连接BD,求证:BD平分∠CBA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON40°P为∠MON内一定点,OM上有一点AON上有一点B,当PAB的周长取最小值时,∠APB的度数是_____°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)(学习心得)

小刚同学在学习完这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.

例如:如图1,在ABC中,AB=AC,BAC=90°,DABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=   °.

(2)(问题解决)

如图2,在四边形ABCD中,∠BAD=BCD=90°,BDC=25°,求∠BAC的度数.

小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;ACD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.

(3)(问题拓展)

如图3,在ABC中,∠BAC=45°,ADBC边上的高,且BD=4,CD=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四个数中任取两个数作为分别代入一元二次方程中,那么所有的一元二次方程中有实数解的一元二次方程的概率为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=2AC=AD是△ABC的高,且 BD=1.

(1) BC的长.

(2)E是边AC上的一点,作射线BE,分别过点AC AFBE于点 FCGBE于点 G,如图2,若 BE=,求 AF CG的和.

查看答案和解析>>

同步练习册答案