精英家教网 > 初中数学 > 题目详情
2.如图,已知二次函数y=ax2-4x+c的图象经过点A(-1,-1)和点B(3,-9).
(1)求该二次函数的表达式;
(2)用配方法求该抛物线的对称轴及顶点坐标;
(3)点C(m,m)与点D均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值;
(4)在(3)的条件下,试问在该抛物线的对称轴上是否存在一点P,使PC+PB的值最小,若存在求出点P的坐标;若不存在,请说明理由.

分析 (1)由条件可知点A和点B的坐标,代入解析式可得到关于a和c的二元一次方程组,解得a和c,可写出二次函数解析式;
(2)利用对称轴为x=-$\frac{b}{2a}$,顶点坐标为(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$)计算出其顶点坐标即可;
(3)把点的坐标代入可求得m的值.
(4)存在.如图,由(2)可知C(6,6),作点B关于对称轴的对称点B′(1,-9),连接CB′与对称轴的交点即为所求的点P.求出直线CB′的解析式即可解决问题.

解答 解:(1)将A(-1,-1),B(3,-9)代入,
得$\left\{\begin{array}{l}{a+4+c=-1}\\{9a-12+c=-9}\end{array}\right.$,
∴a=1,c=-6,
∴y=x2-4x-6;

(2)∵-$\frac{b}{2a}$=-$\frac{-4}{2}$=2,$\frac{4ac-{b}^{2}}{4a}$=$\frac{-24-16}{4}$=-10,
∴对称轴:直线x=2,顶点坐标:(2,-10);

(3)∵点P(m,m)在函数图象上,
∴m2-4m-6=m,
∴m=6或-1.
∵m>0,
∴m=6.

(3)存在.如图,由(2)可知C(6,6),作点B关于对称轴的对称点B′(1,-9),连接CB′与对称轴的交点即为所求的点P.

设直线CB′的解析式为y=kx+b,把A、B代入得到$\left\{\begin{array}{l}{6k+b=6}\\{k+b=-9}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=3}\\{b=-12}\end{array}\right.$,
∴直线CB′的解析式为y=3x-12,
∴P(2,-6).
∴当点P坐标为(2,-6)时,PB+PC最小.

点评 本题考查二次函数综合题、一次函数、待定系数法、最短问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决最值问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,直线AB与x轴的负半轴、y轴的正半轴分别交于点A、点B,M为线段AB的中点,以OM为直径的⊙P分别交x轴、y轴于点C、点D,交直线AB于点E,OB=8,∠OAB=30°.
(1)求证:点C为OA的中点;
(2)求点E的坐标;
(3)若点C在x轴上关于点O的对称点为点F,连结EF,试问在y轴上是否存在点Q,使以点E、F、Q为顶点的三角形为直角三角形.如果存在,直接写出所有满足条件的点Q的坐标;如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是(  )
A.abc>0B.a+b+c<0C.b<a+cD.4a+2b+c>0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,将抛物线y=$\frac{1}{2}$x2经过平移得到抛物线y=$\frac{1}{2}$x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.作图题:
(1)如图1,已知△ABC,用直尺和圆规作△ABC的高AD并在AD上找一点E,使点E到∠B两边距离相等.(要求用尺规作图,保留作图痕迹)
(2)如图2,在正方形网格上的一个△ABC.
①作△ABC关于直线MN的对称图形△A′B′C′(不写作法);
②以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),则可作出4个三角形与△ABC全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.实验与探究:三角点阵前n行的点数计算.
如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…容易发现,10是三角点阵中前4行的点数的和,你能发现300是前多少行的点数的和吗?
如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+…+(n-2)+(n-1)+n,可以发现.
2×[1+2+3+…+(n-2)+(n-1)+n]=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+…+(n-2)+(n-1)+n=n(n+1)这就是说,三角点阵中前n项的点数的和是 n(n+1).
下列用一元二次方程解决上述问题
设三角点阵中前n行的点数的和为300,则有$\frac{1}{2}$n(n+1)=300整理这个方程,得:n2+n-600=0解方程得:n1=24,n2=-25,根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:
(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究出前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图三角板ABC中,∠BAC=90°,∠B=60°,把△ABC绕点A逆时针旋转30°得到△ADE,连接CE,则∠CED=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.张华同学在一次做电学实验时,记录下电流I(安)与电阻R(欧)有如表对应关系:
R2481016
I16843.22
通过描点连线,观察并求出I与R之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.

(1)如图1,若∠ACD=60°,则∠AFD=60°;
(2)如图2,若∠ACD=α,连接CF,则∠AFC=90°-$\frac{1}{2}α$(用含α的式子表示);
(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.

查看答案和解析>>

同步练习册答案