精英家教网 > 初中数学 > 题目详情

【题目】如图,在 ABCD中,CD=2AD,BEAD于点E,FDC的中点,连结EF、BF,下列结论:①∠ABC=2ABF;EF=BF;S四边形DEBC=2SEFB④∠CFE=3DEF,其中正确结论的个数共有( ).

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

如图延长EFBC的延长线于G,取AB的中点H连接FH.证明DFE≌△FCG EF=FG,BEBG,四边形BCFH是菱形即可解决问题;

如图延长EFBC的延长线于G,取AB的中点H连接FH.

CD=2AD,DF=FC,

CF=CB,

∴∠CFB=CBF,

CDAB,

∴∠CFB=FBH,

∴∠CBF=FBH,

∴∠ABC=2ABF.故①正确,

DECG,

∴∠D=FCG,

DF=FC,DFE=CFG,

∴△DFE≌△FCG,

FE=FG,

BEAD,

∴∠AEB=90°,

ADBC,

∴∠AEB=EBG=90°,

BF=EF=FG,故②正确,

SDFE=SCFG

S四边形DEBC=SEBG=2SBEF,故③正确,

AH=HB,DF=CF,AB=CD,

CF=BH,CFBH,

∴四边形BCFH是平行四边形,

CF=BC,

∴四边形BCFH是菱形,

∴∠BFC=BFH,

FE=FB,FHAD,BEAD,

FHBE,

∴∠BFH=EFH=DEF,

∴∠EFC=3DEF,故④正确,

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点M为直线AB上一动点, 都是等边三角形,连接BN

求证:

分别写出点M在如图2和图3所示位置时,线段ABBMBN三者之间的数量关系不需证明

如图4,当时,证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,我们把点叫做点的衍生点.已知点的衍生点为,点的衍生点为,点的衍生点为这样依次得到点若点的坐标为,若点在第四象限,则范围分别为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,分别平分,则________,若分别平分的外角平分线,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线ACBD相交于点O , 且AC=6cm,BD=8cm,动点PQ分别从点BD同时出发,运动速度均为1cm/s,点P沿BCD运动,到点D停止,点Q沿DOB运动,到点O停止1s后继续运动,到点B停止,连接APAQPQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).

(1)填空:AB=cm,ABCD之间的距离为cm;
(2)当4≤x≤10时,求yx之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为 上一点,连接AP,CP,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于点D,点M,N分别是BDBC边上的动点,则MN+MC的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若BC=ECBCE=ACD,则添加不能使ABC≌△DBC的条件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

同步练习册答案