精英家教网 > 初中数学 > 题目详情
3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,求警示牌的高CD为多少米?(结果保留根号)

分析 根据题目中的数据和特殊角的三角函数可以表示出CM和DM的长,从而可以得到CD的长,从而可以解答本题.

解答 解:∵AM=5米,AB=7米,∠MAD=45°,∠MBC=30°,
∴∠MAD=∠MDA=45°,BM=AM+AB=12米,
∴AM=MD=5米,MC=BM•tan30°=12×$\frac{\sqrt{3}}{3}$=4$\sqrt{3}$米,
∴CD=MC-MD=($4\sqrt{3}-5$)米,
答:警示牌的高CD为($4\sqrt{3}-5$)米.

点评 本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用特殊角的三角函数解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.某区为了解七年级学生开展跳绳活动的情况,随机调查了该区部分学校七年级学生1分钟跳绳的次数,将调查结果进行统计,下面是根据调查数据制作的统计图表的一部分.
分组 次数x(个) 人数
 A 0≤x<120 24
 B 120≤x<130 72
 C 130≤x<140 
 D x≥140
根据以上信息,解答下列问题:
(1)在被调查的学生中,跳绳次数在120≤x<130范围内的人数为72人,跳绳次数在0≤x<120范围内的人数占被调查人数的百分比为12%;
(2)本次共调查了200名学生,其中跳绳次数在130≤x<140范围内的人数为59人,跳绳次数在x≥140范围内的人数占被调查人数的百分比为22.5%;
(3)该区七年级共有4000名学生,估计该区七年级学生1分钟跳绳的次数不少于130个的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算.
(1)(2a+3b)2
(2)(27x3-18x2+3x)÷(-3x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知抛物线与x轴交于A(-1,0),B(3,0),与y轴交于点C(0,3).
(1)求该抛物线所对应的函数关系式;
(2)设抛物线上的一个动点P的横坐标为t(0<t<0),过点P作PD⊥BC于点D.
①求线段PD的长的最大值;②当BD=2CD时,求t的值;
(3)若点Q是抛物线的对称轴上的动点,抛物线上存在点M,使得以B、C、Q、M为顶点的四边形为平行四边形,请求出所有满足条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:$\frac{3}{x-3}$=$\frac{2}{{x}^{2}-9}$+$\frac{1}{x+3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式组:$\left\{\begin{array}{l}{\frac{x-1}{2}≥\frac{2x-5}{3}}\\{3x>5+2(x-1)}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.第三届世界互联网大会(3rd World Internet Conference),是由中华人民共和国倡导并举办的互联网盛会,于2016年11月16日至18日在浙江乌镇举办.某初中学校为了了解本校学生对本次互联网大会的关注程度(关注程度分为:A.特别关注;B.一般关注;C.偶尔关注;D.不关注),随机抽取了部分学生进行调查,并将结果绘制成频数折线统计图1和扇形统计图2(不完整)请根据图中信息回答问题.
(1)此次抽样调查中,共调查了多少名学生?
(2)求出图2中扇形B所对的圆心角度数,并将图1补充完整.
(3)在这次调查中,九(1)班共有甲、乙、丙、丁四人“特别关注”本届互联网大会,现准备从四人中随机抽取两人进行交流,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值;
(2)化简:($\frac{{x}^{2}-{y}^{2}}{{x}^{2}-2xy+{y}^{2}}$-$\frac{y}{x-y}$)÷$\frac{x}{x-y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.从数-2,-$\frac{1}{2}$,4中随机抽取一个数记为m,再从数2,$\frac{1}{2}$,-4中随机抽取一个数记为n,则一次函数y=mnx中y的值随x的增大而减小的概率是$\frac{5}{9}$.

查看答案和解析>>

同步练习册答案