分析 (1)根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;
(2)连接AD,根据三角形的面积公式求出即可.
解答 解:(1)当点D在BC的中点上时,DE=DF,
证明:∵D为BC中点,
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和△CFD中$\left\{\begin{array}{l}{∠B=∠C}\\{∠DEB=∠DFC}\\{BD=CD}\end{array}\right.$,
∴△BED≌△CFD(AAS),
∴DE=DF.
(2)CG=DE+DF
证明:连接AD,
∵S三角形ABC=S三角形ADB+S三角形ADC,
∴$\frac{1}{2}$AB×CG=$\frac{1}{2}$AB×DE+$\frac{1}{2}$AC×DF,
∵AB=AC,
∴CG=DE+DF.
点评 本题考查了全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 90° | B. | 75° | C. | 60° | D. | 95° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ∠ABP=∠C | B. | ∠APB=∠ABC | C. | $\frac{AP}{AB}$=$\frac{AB}{AC}$ | D. | $\frac{AB}{BP}$=$\frac{AC}{CB}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com