精英家教网 > 初中数学 > 题目详情

先阅读下面的例题:

解方程:

解:(1)当x≥0时,原方程化为

解得x1=2,x2=-1(不合题意,舍去)

(2)当x<0时,原方程化为

解得x1=-2,x2=1(不合题意,舍去)

所以原方程的解是x1=2,x2=-2

请参考以上例题的解法

解方程:

 

【答案】

所以原方程的解是x1=1,x2=-2

【解析】解:当x≥1时,原方程化为

      x2-(x-1)-1=0 …………………………2分

即x2-x=0

解得x1=1  x2=0(不合题意,舍去)………………… 4分

当x<1时,原方程化为

     x2+(x-1)-1=0 ………………………… 6分

     即x2+x-2=0

解得x1=-2  x2=1    (不合题意,舍去)………………7分

所以原方程的解是x1=1,x2=-2

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先阅读下面的例题,再解答后面的题目.
例:已知x2+y2-2x+4y+5=0,求x+y的值.
解:由已知得(x2-2x+1)+(y2+4y+4)=0,
即(x-1)2+(y+2)2=0.
因为(x-1)2≥0,(y+2)2≥0,它们的和为0,
所以必有(x-1)2=0,(y+2)2=0,
所以x=1,y=-2.
所以x+y=-1.
题目:已知x2+4y2-6x+4y+10=0,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面的例题,再按照要求解答:
例题:解一元二次不等式x2-9>0
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有(1)
x+3>0
x-3>0
,(2)
x+3<0
x-3<0

解不等式组(1),得x>3
解不等式组(1),得x<-3
故(x+3)(x-3)>0的解集是x>3或x<-3
故不等式x2-9>0的解集为x>3或x<-3.
问题:用上述方法求不等式的解集.
(1)求不等式x2-3x-4>0的解集.
(2)求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面的例题,再按要求解答:
例题:解不等式(x+3)(x-3)>0.
解:∵(x+3)(x-3)>0,由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0

(2)
x+3<0
x-3<0.

解不等式组(1),得x>3;
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

.先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省九年级下学期第一次月考数学卷 题型:解答题

先阅读下面的例题,再按要求解答。(10分)

例:解一元二次不等式x2-9>0

解:∵x2-9=(x+3)(x-3)  ∴(x+3)(x-3)>0 

由有理数的乘法法则“两数相乘,同号得正”得

(1)      (2)

解不等式组(1),得x>3

解不等式组(2),得x<-3

∴(x+3)(x-3)>0的解集为x>3或x<-3

即一元二次不等式x2-9>0的解集为x>3或x<-3

问题:求分式不等式的解集

 

查看答案和解析>>

同步练习册答案