精英家教网 > 初中数学 > 题目详情
(2002•苏州)已知关于x的方程
(1)求证:无论m取什么实数,这个方程总有两个相异的实数根;
(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1、x2
【答案】分析:(1)根据方程根的判别式判断根的情况,只要证明判别式△的值恒为正值即可;
(2)|x2|=|x1|+2,即|x2|-|x1|=2,两边平方后再配方得(x1+x22-4|x1x2|=4,再根据根与系数的关系用m表示出两根的和与两根的积,代入得到关于m的方程,即可求得m的值.
解答:解:(1)∵a=1,b=-(m-2),c=
∴△=b2-4ac=[-(m-2)2]-4×1×(
=2m2-4m+4=2(m-1)2+2>0,
∴方程总有两个不相等的实数根;

(2)∵a=1,b=-(m-2),c=-
∴x1+x2=m-2,
∵方程总有两个的实数根
∴x1•x2=-≤0,
∴x1与x2异号或有一个为0,由|x2|=|x1|+2,|x2|-|x1|=2,
当x1≥0,x2<0时,-x2-x1=2,即-(m-2)=2,解得m=0,
此时,方程为x2+2x=0,解得x1=0,x2=-2;
当x1≤0,x2>0时,x2+x1=m-2=2,解得m=4,
当m=4时,x2-2x-4=0,
∴x1=1-,x2=1+
点评:总结一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
此题不仅考查了根的判别式的应用,还应用了根与系数的关系以及配方法的运用,增根的判断.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《反比例函数》(03)(解析版) 题型:解答题

(2002•苏州)已知反比例函数和一次函数y=kx-1的图象都经过点P(m,-3m).
(1)求点P的坐标和这个一次函数的解析式;
(2)若点M(a,y1)和点N(a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2

查看答案和解析>>

科目:初中数学 来源:2002年江苏省苏州市中考数学试卷(解析版) 题型:解答题

(2002•苏州)已知反比例函数和一次函数y=kx-1的图象都经过点P(m,-3m).
(1)求点P的坐标和这个一次函数的解析式;
(2)若点M(a,y1)和点N(a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2

查看答案和解析>>

科目:初中数学 来源:2010年山东省潍坊市中考数学模拟试卷(一)(解析版) 题型:解答题

(2002•苏州)已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE;
(2)若BC⊥AB,且BC=10,AB=12,求AF的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2002•苏州)已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE;
(2)若BC⊥AB,且BC=10,AB=12,求AF的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《四边形》(04)(解析版) 题型:填空题

(2002•苏州)已知梯形的上底长4cm,下底长8cm,则它的中位线长     cm.

查看答案和解析>>

同步练习册答案