精英家教网 > 初中数学 > 题目详情

【题目】在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为km,a=
(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?

【答案】
(1)85;1.7h
(2)解:当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,

∵函数图像经过点(0,25),(0.5,0),

解得

所以,y=﹣50x+25;

当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,

∵函数图像经过点(0.5,0),(1.7,60),

解得

所以,y=50x﹣25;


(3)解:由﹣50x+25=15,

解得x=0.2,

由50x﹣25=15,

解得x=0.8.

所以,该海巡船能接受到该信号的时间为:0.6h


【解析】解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60, 所以,A、C港口间的距离为:25+60=85km,
海巡船的速度为:25÷0.5=50km/h,
∴a=85÷50=1.7h.
所以答案是:85,1.7h;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P(3a,a)是反比例函数y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.

(1)求斜坡AB的水平宽度BC;
(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2 , 则四边形PFCG的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣2|﹣(1+ 0+
(2)(a﹣ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2﹣ax﹣a经过点B(2, ),与y轴交于点D.

(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2a、宽为2b的长方形其中a,b均为正数,且a>b,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形

1你认为图2中大正方形的边长为 a+b 小正方形阴影部分的边长为 .(用含a、b的代数式表示

2仔细观察图2,请你写出下列三个代数式:a+b2a-b2,ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证

3已知a+b=7,ab=6求代数式a-b的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:
①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣
其中结论错误的是 (只填写序号).

查看答案和解析>>

同步练习册答案