精英家教网 > 初中数学 > 题目详情

如图中图(1)是一个三角形,分别连结这具三角形三边中点和图(2)再分别连结图(2)中间的小三角形三边的中点得图(3),按此方法连续下去,请观察每个图中的三角形的个数的规律,则第n个图形中有________个三角形(用含n的式子表示).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=
1
2
AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比
5
-1
2

①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点精英家教网P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:
如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.
(2)探究与计算:
已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.
(3)归纳与拓展:
已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
①②③④
①②③④
(填序号即可)
①AF=AG=
12
AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程;
(3)类比探究:
(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:
等腰直角三角形
等腰直角三角形

(ii)在三边互不相等的△ABC中(见备用图),仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论此时仍然成立,你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).
精英家教网
(1)图2中拼成的正方形的面积是
 
;边长是
 
;(填实数)
(2)请你在图3中画一个面积为5的正方形,要求所画正方形的顶点都在格点上.请用虚线画出.
(3)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.并求出它的边长.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北潜江、仙桃、天门、江汉油田卷)数学(解析版) 题型:解答题

一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:

如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.

(2)探究与计算:

已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.

(3)归纳与拓展:

已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).

 

查看答案和解析>>

同步练习册答案