精英家教网 > 初中数学 > 题目详情
精英家教网如图,F在平行四边形ABCD的边DC的延长线上,连接AF交BC于E,且CE:BE=1:3,若△EFC的面积等于a,求平行四边形的面积.
分析:根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.
解答:解:∵DC∥AB,
∴△CEF∽△BEA.(1分)
S△CEF
S△ABE
=(
CE
BE
2=
1
9
EF
EA
=
CE
BE
=
1
3

∴S△ABE=9a,
EF
FA
=
1
4
.(2分)
又∵CE∥AD,
∴△CEF∽△DAF.(1分)
S△CEF
S△AFD
=(
EF
AF
2=
1
4
=
1
16

∴S△FAD=16a.(2分)
∴SAECD=15a.
SABCD=24a.(2分)
点评:考查了相似三角形的判定和性质及高相等,平行四边形与梯形面积的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,EF在平行四边形ABCD的边AB的延长线上,且EF=AB,DE交CB于点M.
求证:△BME∽△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若
AF
EF
=3,求
CD
CG
的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是
AB=3EH
AB=3EH
,CG和EH的数量关系是
CG=2EH
CG=2EH
CD
CG
的值是
3
2
3
2

(2)类比延伸
如图2,在原题的条件下,若
AF
EF
=m(m>0),则
CD
CG
的值是
m
2
m
2
(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若
AB
CD
=a,
BC
BE
=b,(a>0,b>0)
,则
AF
EF
的值是
ab
ab
(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•阜宁县一模)在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若
AF
EF
=3
,求
CD
CG
的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求
AB
EH
的值是
3
3
CG
EH
的值是
2
2
,从而确定
CD
CG
的值是
3
2
3
2

(2)类比延伸
如图2,在原题的条件下,若
AF
EF
=m
(m>0),则
CD
CG
的值是
m
2
m
2
.(用含m的代数式表示),写出解答过程.
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若
AB
CD
=a
BC
BE
=b
(a>0,b>0),则
AF
EF
的值是
ab
ab
.(用含a、b的代数式表示)写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在平行四边形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.
求证:①△ABF≌△DCE;②四边形ABCD是矩形.
(2)如图2,已知△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.
①请用尺规作图的方法,过点D作DM⊥BE,垂足为M;(不写作法,保留作图痕迹)
②求证:BM=EM.

查看答案和解析>>

同步练习册答案