精英家教网 > 初中数学 > 题目详情
7.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.猜想BD2、AD2、CD2之间的关系,并证明.

分析 由等腰直角三角形的性质可知BC=AC,CD=CE,∠ACB=∠ECD=90°,通过等量减等量即可推出∠ACE=∠BCD,根据全等三角形的判定定理“SAS”,得到△ACE≌△BCD,BD=AE,∠CAE=∠B=45°,然后根据等腰直角三角形的性质推出∠CAB=45°,即可推出EA⊥BA,即△EAD为直角三角形,再根据勾股定理即可推出AE2+AD2=DE2,即可得到结论.

解答 解:∵△ABC和△ECD都是等腰直角三角形,
∴BC=AC,CD=CE,
∠ACB=∠ECD=90°,
∴∠ACB-∠ACD=∠ECD-∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{BC=AC}\\{∠ACE=∠BCD}\\{CD=CE}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
∴BD=AE,
∵∠CAE=∠B=45°∠ACE=∠BCD,
∴∠DAE=∠BAC+∠EAC=45°+45°=90°,
∴在Rt△ADE中AD2+AE2=DE2
即AD2+BD2=DE2
∵DE=$\sqrt{2}$CD,
∴AD2+BD2=2CD2

点评 本题主要考查全等三角形的判定及性质,勾股定理,等腰直角三角形性质,关键在于认真的阅读题目,正确的运用相关的性质定理求证三角形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.抛物线y=x2+bx+3,当实数b变化时,它的顶点都在某条抛物线f上,求f的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)在图1中,已知线段AB,CD,它们的中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为(1,0);
②若C(-2,2),D(-2,-1),则F点坐标为(-2,$\frac{1}{2}$);
(2)在图2中,无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,请直接写出x、y的值:x=$\frac{a+c}{2}$,y=$\frac{b+d}{2}$;(用含a、b、c、d的式子表示)
(3)如图3,一次函数y=x-2与反比例函数$y=\frac{3}{x}$的图象交于A、B两点,若以A、O、B、P为顶点的四边形是平行四边形,请直接写出顶点P的坐标:(2,-2),(4,4),(-4,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.分别以矩形ABCD的边AD和CD为一边,向矩形外作正三角形ADE和正三角形CDF,连接BE和BF.
求证:BE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问AD与BC是否相等?说明你的理由.
解:∵AE⊥CD,BF⊥CD∴∠AED=∠BFC=90°(垂直的定义)
在△ADE和△BCF中,

∴△ADE≌△BCF  (AAS )
∴AD=BC   (全等三角形的对应边相等)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,正方形ABCD、DEFH的边长都是5cm,点P从点D出发,先到点A,然后沿箭头所指方向运动(经过点D时不拐弯),则从出发开始连续运动2014cm时,它离点C 最近,此时它距该点1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若关于x,y的方程组$\left\{\begin{array}{l}{y=kx-1}\\{y={x}^{2}+x}\end{array}\right.$有唯一解,则k的值是-1或3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,AB是一大型广告牌截面,CD是一堵墙的横截面,AB,CD均与地面BE垂直,广告牌的安全拉线ACE要越过围墙(B、D、E三点在同一直线上),已知:AB=5米,CD=3米,∠CED=45°,∠ACE=165°,求拉线ACE的长l(参考数据$\sqrt{2}$≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在反比例函数y=$\frac{2k-3}{x}$的图象所在的每个象限中,如果函数值y随自变量的x值增大而增大,那么常数k的取值范围是k<$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案