精英家教网 > 初中数学 > 题目详情
(2013•黔东南州一模)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)是否存在点P,使△ADP是直角三角形时?若存在,求点P的坐标;若不存在,请说明理由.
分析:(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;
(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:
①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;
②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标.
解答:解:(1)∵抛物线的顶点为Q(2,-1),
∴设抛物线的解析式为y=a(x-2)2-1,
将C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;

(2)分两种情况:
①当点P1为直角顶点时,点P1与点B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵点A在点B的右边,
∴B(1,0),A(3,0);
∴P1(1,0);
②当点A为△AP2D2的直角顶点时;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
当∠D2AP2=90°时,∠OAP2=45°,
∴AO平分∠D2AP2
又∵P2D2∥y轴,
∴P2D2⊥AO,
∴P2、D2关于x轴对称;
设直线AC的函数关系式为y=kx+b(k≠0).
将A(3,0),C(0,3)代入上式得:
3k+b=0
b=3

解得,
k=-1
b=3

∴y=-x+3;
设D2(x,-x+3),P2(x,x2-4x+3),
则有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴当x=2时,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐标为P2(2,-1)(即为抛物线顶点).
综上所述,P点坐标为P1(1,0),P2(2,-1).
点评:此题主要考查了二次函数解析式的确定、直角三角形的判定等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黔东南州)将一副三角尺如图所示叠放在一起,则
BE
EC
的值是
3
3
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔东南州一模)掷一枚质地均匀的硬币100次,下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔东南州一模)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若BC=4,CD=2
5
,则BE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔东南州)下列运算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔东南州)某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是(  )

查看答案和解析>>

同步练习册答案