25¡¢ÔÚÊýѧѧϰÖУ¬¼°Ê±¶Ô֪ʶ½øÐйéÄɺÍÕûÀíÊǸÄÉÆѧϰµÄÖØÒª·½·¨¡¢ÉÆÓÚѧϰµÄСÃ÷ÔÚѧϰÁËÒ»´Î·½³Ì£¨×飩¡¢Ò»ÔªÒ»´Î²»µÈʽºÍÒ»´Îº¯Êýºó£¬¶ÔÏà¹Ø֪ʶ½øÐÐÁ˹éÄÉÕûÀí£®

£¨1£©ÀýÈ磬ËûÔÚͬһ¸öÖ±½Ç×ø±êϵÖл­³öÁËÒ»´Îº¯Êýy=x+2ºÍy=-x+4µÄͼÏó£¨Èçͼ1£©£¬²¢×÷Á˹éÄÉ£º

Çë¸ù¾Ýͼ1ºÍÒÔÉÏ·½¿òÖеÄÄÚÈÝ£¬ÔÚÏÂÃæÊý×ÖÐòºÅºóд³öÏàÓ¦µÄ½áÂÛ£º
¢Ù
-x+4=0
£»¢Ú
x+2=0
£»¢Û
x+2£¾0
£»¢Ü
-x+4£¼0
£»
£¨2£©ÈôÒÑÖªÒ»´Îº¯Êýy=k1x+b1ºÍy=kx+bµÄͼÏó£¨Èçͼ2£©£¬ÇÒËüÃǵĽ»µãCµÄ×ø±êΪ£¨1£¬3£©£¬ÄÇô²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯ÊÇ
x¡Ü1
£®
·ÖÎö£º£¨1£©¸ù¾ÝÒ»ÔªÒ»´Î·½³Ì£¬Ò»ÔªÒ»´Î²»µÈʽ£¬Ò»´Îº¯ÊýÖ®¼äµÄ¹Øϵ£¬½áºÏº¯ÊýͼÏó¼´¿É×÷³öÅжϣ»
£¨2£©²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯¾ÍÊǺ¯Êýy=kx+bµÄͼÏ󣬵Ľ»µãÒÔ¼°ÔÚÉϱߵIJ¿·Ö¶ÔÓ¦µÄ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©¢Ù-x+4=0£»¢Úx+2=0£»¢Ûx+2£¾0£»¢Ü-x+4£¼0£»

£¨2£©²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯Îª£ºx¡Ü1£®
µãÆÀ£º±¾ÌâÖ»Òª¿¼²éÁË·½³Ì£¬²»µÈʽÒÔ¼°º¯ÊýµÄ¹Øϵ£¬ÊýÐνáºÏÊdzõÖÐÊýѧÐèÒªÕÆÎյĻù±¾Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýѧѧϰÖУ¬¼°Ê±¶Ô֪ʶ½øÐйéÄɺÍÕûÀíÊǸÄÉÆѧϰµÄÖØÒª·½·¨£®ÉÆÓÚѧϰµÄСÃ÷ÔÚѧϰÁËÒ»´Î·½³Ì£¨×飩¡¢Ò»ÔªÒ»´Î²»µÈʽºÍÒ»´Îº¯Êýºó£¬°ÑÏà¹Ø֪ʶ¹éÄÉÕûÀíÈçÏ£º¾«Ó¢¼Ò½ÌÍø
£¨1£©ÇëÄã¸ù¾ÝÒÔÉÏ·½¿òÖеÄÄÚÈÝÔÚÏÂÃæÊý×ÖÐòºÅºóд³öÏàÓ¦µÄ½áÂÛ£º¢Ù
 
£»¢Ú
 
£»¢Û
 
£»¢Ü
 
£»
£¨2£©Èç¹ûµãCµÄ×ø±êΪ£¨1£¬3£©£¬ÄÇô²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýѧѧϰÖУ¬¼°Ê±¶Ô֪ʶ½øÐйéÄɺÍÕûÀíÊÇÍêÉÆ֪ʶ½á¹¹µÄÖØÒª·½·¨£®ÉÆÓÚѧϰµÄСÃ÷ÔÚѧϰÁËÒ»´Î·½³Ì£¨×飩¡¢Ò»ÔªÒ»´Î²»µÈʽºÍÒ»´Îº¯Êýºó£¬°ÑÏà¹Ø֪ʶ¹éÄÉÕûÀíÈçÏ£º¾«Ó¢¼Ò½ÌÍø
£¨1£©ÇëÄã¸ù¾ÝÒÔÉÏ·½¿òÖеÄÄÚÈÝÔÚÏÂÃæÊý×ÖÐòºÅºóд³öÏàÓ¦µÄ½áÂÛ£º
¢Ù
 
£»¢Ú
 
£»¢Û
 
£»¢Ü
 
£»
£¨2£©Èç¹ûµãCµÄ×ø±êΪ£¨1£¬3£©£¬ÄÇô²»µÈʽkx+b¡Ük1x+b1µÄ½â¼¯ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýѧѧϰÖУ¬¼°Ê±¶Ô֪ʶ½øÐйéÄɺÍÕûÀíÊǸÄÉÆѧϰµÄÖØÒª·½·¨£®ÉÆÓÚѧϰµÄСÃ÷ÔÚѧϰÁËÒ»´Î·½³Ì£¨×飩¡¢Ò»ÔªÒ»´Î²»µÈʽºÍÒ»´Îº¯Êýºó£¬°ÑÏà¹Ø֪ʶ¹éÄÉÕûÀíÈçÏ£º
Ò»´Îº¯ÊýÓë·½³ÌµÄ¹Øϵ£º
¾«Ó¢¼Ò½ÌÍø¾«Ó¢¼Ò½ÌÍø
Ò»´Îº¯ÊýÓë²»µÈʽµÄ¹Øϵ£»
¾«Ó¢¼Ò½ÌÍø
£¨1£©Çë¸ù¾ÝÒÔÉÏ·½¿òÖеÄÄÚÈÝÔÚÏÂÃæÊýѧÐòºÅºó±ßµÄºáÏßÉÏд³öÏàÓ¦µÄ½áÂÛ£®
¢Ù
 
£»¢Ú
 
£»¢Û
 
£»¢Ü
 
£»
£¨2£©Èç¹ûµãCµÄ×ø±êΪ£¨1£¬3£©£¬ÄÇô²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýѧѧϰÖУ¬¼°Ê±¶Ô֪ʶ½øÐйéÄɺÍÕûÀíÊǸÄÉÆѧϰµÄÖØÒª·½·¨£®ÉÆÓÚѧϰµÄСÃ÷ÔÚѧϰÁËÒ»´Î·½³Ì£¨×飩¡¢Ò»ÔªÒ»´Î²»µÈʽºÍÒ»´Îº¯Êýºó£¬°ÑÏà¹Ø֪ʶ¹éÄÉÕûÀíÈçÏ£º
Ò»´Îº¯ÊýÓë·½³ÌµÄ¹Øϵ£º
£¨1£©Ò»´Îº¯ÊýµÄ½âÎöʽ¾ÍÊÇÒ»¸ö¶þÔªÒ»´Î·½³Ì£»
£¨2£©µãBµÄºá×ø±êÊÇ·½³Ì¢ÙµÄ½â£»
£¨3£©µãCµÄ×ø±ê£¨x£¬y£©ÖеÄx£¬yµÄÖµÊÇ·½³Ì×é¢ÚµÄ½â£®Ò»´Îº¯ÊýÓë²»µÈʽµÄ¹Øϵ£»
£¨1£©º¯Êý y=kx+bµÄº¯ÊýÖµy´óÓÚ0ʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¾ÍÊDz»µÈʽ¢ÛµÄ½â¼¯£»
£¨2£©º¯Êýy=kx+bµÄº¯ÊýÖµyСÓÚ0ʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¾ÍÊDz»µÈʽ¢ÜµÄ½â¼¯£»£¨1£©Çë¸ù¾ÝÒÔÉÏ·½¿òÖеÄÄÚÈÝÔÚÏÂÃæÊýѧÐòºÅºó±ßµÄºáÏßÉÏд³öÏàÓ¦µÄ½áÂÛ£º
¢Ù
kx+b=0
kx+b=0

¢Ú
y=kx+b
y=k1x+b1
y=kx+b
y=k1x+b1

¢Û
kx+b£¾0
kx+b£¾0

¢Ü
kx+b£¼0
kx+b£¼0

£¨2£©Èçͼ£¬Èç¹ûµãCµÄ×ø±êΪ£¨1£¬3£©£¬ÄÇô²»µÈʽkx+b¡Ýk1x+b1µÄ½â¼¯ÊÇ
x¡Ü1
x¡Ü1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸