精英家教网 > 初中数学 > 题目详情
20.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:
乘车路程计价区段0-1011-1516-20
对应票价(元)234
另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.
小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是1元.

分析 首先用下车时站名上对应的数字减去上车时站名上对应的数字,求出小明乘车的路程是多少,进而求出相应的票价是多少;然后用它乘以0.25,求出小明乘车的费用是多少元即可.

解答 解:因为小明乘车的路程是:22-5=17,
所以小明乘车的费用是:
4×0.25=1(元).
答:小明乘车的费用是1元.
故答案为:1.

点评 此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,解答此题的关键是求出小明乘车的路程、相应的票价是多少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.(1)当x=-1时,求分式$\frac{x-1}{{2{x^2}+1}}$的值.
(2)已知a2-4a+4与|b-1|互为相反数,求$\frac{a-b}{a+b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.a,b,c是直线,且a∥b,b∥c,则a∥c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读材料:
如图1,在平面直角坐标系中,O为坐标原点,对于任意两点A (x1,y1),B(x2,y2),由勾股定理可得:AB2=(x1-x22+(y1-y22,我们把$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$叫做A、B两点之间的距离,记作AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
例题:在平面直角坐标系中,O为坐标原点,设点P(x,0).
①A(0,2),B (3,-2),则AB=5.;PA=$\sqrt{{x}^{2}+4}$.;
解:由定义有AB=$\sqrt{(0-3)^{2}+[2-(-2)]^{2}}=5$;PA=$\sqrt{(x-3)^{2}+(0-2)^{2}}=\sqrt{{x}^{2}+4}$.
②$\sqrt{(x-1)^{2}+4}$表示的几何意义是点P(x,0)到点(1,2)的距
离;$\sqrt{{x}^{2}+1}+\sqrt{(x-2)^{2}+9}$表示的几何意义是点P(x,0)分别到点(0,1)和点(2,3)的距离和.
解:因为$\sqrt{(x-1)^{2}+4}=\sqrt{(x-1)^{2}+(0-2)^{2}}$,所以$\sqrt{(x-1)^{2}+4}$表示的几何意义是点P(x,0)到点(1,2)的距
离;同理可得,$\sqrt{{x}^{2}+1}+\sqrt{(x-2)^{2}+9}$表示的几何意义是点P(x,0)分别到点(0,1)和点(2,3)的距离和.
根据以上阅读材料,解决下列问题:
(1)如图2,已知直线y=-2x+8与反比例函数y=$\frac{6}{x}$(x>0)的图象交于A(x1,y1)、B(x2,y2)两点,
则点A、B的坐标分别为A(1,6),B(3,2),AB=2$\sqrt{5}$.
(2)在(1)的条件下,设点P(x,0),则$\sqrt{(x-{x}_{1})^{2}+{y}_{1}^{2}}+\sqrt{(x-{x}_{2})^{2}+{y}_{2}^{2}}$表示的几何意义是点P(x,0)分别到点(1,6)和点(3,2)的距离和;试求$\sqrt{(x-{x}_{1})^{2}+{y}_{1}^{2}}+\sqrt{(x-{x}_{2})^{2+{y}_{2}^{2}}}$的最小值,以及取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,BD=2DC,AD,BE,CF交于一点G,S△BGD=16,S△AGE=6,则△ABC的面积是60.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.
(1)此变化过程中,时间是自变量,路程因变量;
(2)甲的速度是$\frac{50}{3}$千米/时,乙的速度是$\frac{100}{3}$千米/时;
(3)6时表示乙追上甲;
(4)路程为150千米,甲行驶了9小时,乙行驶了4小时;
(5)9时甲在乙的后面(前面、后面、相同位置);
(6)分别写出甲乙两人行驶的路程s(千米)与行驶的时间t(小时)的函数关系式(不要求写出自变量的取值范围)
S=$\frac{50}{3}$t
S=$\frac{150}{4}$t-$\frac{450}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,将△ABC沿BC方向平移l个单位,得到△DEF,若四边形ABFD的周长是12,则△ABC的周长为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE,垂足为F.
(1)线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=AE.
(2)连结CE,如果BC=10,AB=6,求sin∠ECF的值.

查看答案和解析>>

同步练习册答案