如图,AB//CD,∠CAB=108°,AC=2.
⑴用直尺和圆规作∠A的平分线AE,交CD于E,并在AB
上取一点F,使AC=AF,再连接CF,交AE于K;
(要求保留作图痕迹,不必写出作法)
⑵依据现有条件,直接写出图中所有相似的三角形,并求出AK.
(图中不再增加字母和线段,不要求证明).
科目:初中数学 来源: 题型:
观察控究,完成证明和填空.
如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
(1)求证:四边形EFGH是平行四边形;
(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:
当四边形ABCD变成平行四边形时,它的中点四边形是__________;
当四边形ABCD变成矩形时,它的中点四边形是__________;
当四边形ABCD变成菱形时,它的中点四边形是__________;
当四边形ABCD变成正方形时,它的中点四边形是__________;
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
查看答案和解析>>
科目:初中数学 来源: 题型:
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是_____ _________.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D.E,连结AD、BD、BE。
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形。
_____________________,______________________ 。
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线经过点A.B.D,且B为抛物线的顶点。
①写出顶点B的坐标(用a的代数式表示)___________。
②求抛物线的解析式。
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如右图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.
解: ∵AD平分∠BAC
∴∠________=∠_________(角平分线的定义)
在△ABD和△ACD中
∴△ABD≌△ACD( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com