精英家教网 > 初中数学 > 题目详情

已知:五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,CD=ED,求证:AB∥CE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知O是正方形ABCD对角线AC上一点,以O为圆心、OA的长为半径的⊙O与BC相切于M,与AB精英家教网、AD分别相交于E、F.
(1)求证:CD与⊙O相切;
(2)若正方形ABCD的边长为1,求⊙O的半径;
(3)对于以点M、E、A、F以及CD与⊙O的切点为顶点的五边形的五条边,从相等关系考虑,你可以得出什么结论?请给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•金山区一模)已知边长为4的正方形ABCD截去一个角后成为五边形ABCFE(如图).其中EF=
5
,cot∠DEF=
1
2

(1)求线段DE、DF的长;
(2)若点P是线段EF上的一个动点,过P作PG⊥AB,PH⊥BC,设PG=x,四边形BHPG的面积y,求y关于x的函数关系式(写出定义域).并画出函数大致图象;
(3)当点P运动到四边形BHPG相邻两边之比为2:3时,求四边形BHPG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,△ABC为正三角形,点M为BC边上任意一点,点N为CA边上任意一点,且BM=CN,BN与AM相交于Q点,试求∠BQM的度数.
(2)如果将(1)中的正三角形改为正方形ABCD(如图2),点M为BC上任意一点,点N为CD边上任意一点,且BM=CN,BN与AM相交于Q点,那么∠BQM等于多少度呢?说明理由.

(3)如果将(1)中的“正三角形”改为正五边形…正n边形(如图3),其余条件都不变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:正多边形的各个角都相等)
正多边形 正五边形 正n边形
∠BQM的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在梯形ABCD中,AD∥BC,AB=CD,BC=8,∠B=60°,点M是边BC的中点,点E、F分别是边AB、CD上的两个动点(点E与点A、B不重合,点F与点C、D不重合),且∠EMF=120°.
(1)求证:ME=MF;
(2)试判断当点E、F分别在边AB、CD上移动时,五边形AEMFD的面积的大小是否会改变,请证明你的结论;
(3)如果点E、F恰好是边AB、CD的中点,求边AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在梯形ABCD中,AD∥BC,AB=CD,BC=8,∠B=60°,点M是边BC的中点,点E、F分别是边AB、CD上的两个动点(点E与点A、B不重合,点F与点C、D不重合),且∠EMF=120°.
(1)求证:ME=MF;
(2)试判断当点E、F分别在边AB、CD上移动时,五边形AEMFD的面积的大小是否会改变,请证明你的结论;
(3)如果点E、F恰好是边AB、CD的中点,求边AD的长.

查看答案和解析>>

同步练习册答案