精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长均为1个单位的正方形网格图中,建立了平面直角坐标系xOy,按要求解答下列问题:

(1)写出△ABC三个顶点的坐标;

(2)画出△ABC向右平移6个单位后得到的图形△A1B1C1

(3)求△ABC的面积.

【答案】(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);

(2)见解析

(3)△ABC的面积为6.5

【解析】

试题分析:(1)根据坐标系得出各顶点坐标即可;

(2)利用图形的平移性质得出对应点坐标进而得出答案;

(3)利用梯形的面积减去三角形的面积进而得出答案.

解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);

(2)如图所示:

(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AECFMN分别是BEDF的中点,试说明四边形MFNE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直角三角形AOC的直角顶点O为原点,以OCOA所在直线为x轴和y轴建立平面直角坐标系,点满足

C点的坐标为______;A点的坐标为______.

已知坐标轴上有两动点PQ同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束的中点D的坐标是,设运动时间为问:是否存在这样的t,使?若存在,请求出t的值;若不存在,请说明理由.

F是线段AC上一点,满足,点G是第二象限中一点,连OG,使得E是线段OA上一动点,连CEOF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线ACBD相交于点O,分别延长OAOC到点EF,使AE=CF,依次连接BFDE各点.

1)求证:BAE≌△BCF

2)若∠ABC=40°,则当∠EBA=  时,四边形BFDE是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:EF∥AD ∠1=∠2∠BAC=70°,将求∠AGD的过程填写完整:

因为EF∥AD,所以∠2=__

又因为∠1=∠2,所以∠1=∠3

所以AB∥__

所以∠BAC+__=180°

因为∠BAC=70°,所以∠AGD=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,F为BC边上一点,连接AF交DE于点G,下列说法不正确的是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案