精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设数学公式=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是


  1. A.
    (1)(2)(3)
  2. B.
    (1)(3)
  3. C.
    (1)(2)
  4. D.
    (2)(3)
C
分析:(1)由四边形ABCD是矩形,可得∠B=∠C=90°,又由EF⊥AE,利用同角的余角相等,即可求得∠BAE=∠FEC,然后利用有两角对应相等的三角形相似,证得△ABE∽△ECF;
(2)由(1),根据相似三角形的对应边成比例,可得,又由E是BC的中点,即可得,继而可求得tan∠BAE=tan∠EAF,即可证得AE平分∠BAF;
(3)当k=1时,可得四边形ABCD是正方形,由(1)易求得CF:CD=1:4,继而可求得AB:CD与BE:DF的值,可得△ABE与△ADF不相似.
解答:(1)∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵EF⊥AE,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
故(1)正确;
(2)∵△ABE∽△ECF,

∵E是BC的中点,
即BE=EC,

在Rt△ABE中,tan∠BAE=
在Rt△AEF中,tan∠EAF=
∴tan∠BAE=tan∠EAF,
∴∠BAE=∠EAF,
∴AE平分∠BAF;
故(2)正确;
(3)∵当k=1时,即=1,
∴AB=AD,
∴四边形ABCD是正方形,
∴∠B=∠D=90°,AB=BC=CD=AD,
∵△ABE∽△ECF,

∴CF=CD,
∴CF=CD,
∴AB:AD=1,BE:DF=2:3,
∴△ABE与△ADF不相似;
故(3)错误.
故选C.
点评:此题考查了相似三角形的判定与性质、矩形的性质、正方形的判定与性质以及三角函数的定义.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案