分析 (1)由四边形ACED是⊙O的内接四边形,得到∠ACB+∠ADE=180°,由于∠BDE+∠ADE=180°,得到∠BDE=∠ACB,即可得到结论;
(2)连结OE,根据切线的性质得到∠OEG=90°,根据等腰三角形的性质得到∠OEC=∠ACB,根据平行线的性质即可得到结论
(3)设CG=x.根据等腰三角形的性质得到BF=DF=1,AF=AB-BF=AC-BF=5,由相似三角形的判定和性质即可得到结论.
解答 解:(1)∵四边形ACED是⊙O的内接四边形,
∴∠ACB+∠ADE=180°,
∵∠BDE+∠ADE=180°,
∴∠BDE=∠ACB,
∵AB=AC,
∴∠B=∠ACB.
∴∠B=∠BDE,
∴△BDE为等腰三角形;
(2)连结OE,
∵直线FG与⊙O相切,
∴∠OEG=90°,
∵OC=OE,
∴∠OEC=∠ACB,
∵∠B=∠ACB,
∴∠B=∠OEC,
∴OE∥AB,
∴∠AFG=∠OEG=90°,
即GF⊥AB;
(3)设CG=x.
∵△BDE为等腰三角形,GF⊥AB,
∴BF=DF=1,AF=AB-BF=AC-BF=5,
∵OE∥AB,
∴△GOE∽△GAF,
∴$\frac{OE}{AF}$=$\frac{OG}{AG}$,
∴$\frac{3}{5}$=$\frac{x+3}{x+6}$,
解得x=$\frac{3}{2}$,
即CG=$\frac{3}{2}$.
点评 本题考查了圆内接四边形的性质,切线的性质,等腰三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ?②④ | C. | ①③ | D. | ?①④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 有解,x=1 | B. | 有解,x=5 | C. | 有解,x=4 | D. | 无解 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com