分析 先过点E作EM⊥AB于M,延长EG交AB于Q,则△EQM是直角三角形,四边形ADEM是矩形,先判定△FCH≌△QAG(ASA),得出AQ=CF=2,FH=QG,然后在Rt△EMQ中,根据勾股定理求得EQ=$\sqrt{E{M}^{2}+Q{M}^{2}}$=$\sqrt{5}$,即可得到EG+QG=EG+FH=$\sqrt{5}$.
解答 解:过点E作EM⊥AB于M,延长EG交AB于Q,则△EQM是直角三角形.
∵EG⊥AC,FH⊥AC,
∴∠CHF=∠AGQ=90°,
∵矩形ABCD中,CD∥AB,
∴∠FCH=∠QAG,
在△FCH和△QAG中,
$\left\{\begin{array}{l}{∠CHF=∠AGQ}\\{CH=AG}\\{∠FCH=∠QAG}\end{array}\right.$,
∴△FCH≌△QAG(ASA),
∴AQ=CF=2,FH=QG,
∵∠D=∠DAM=∠AME=90°,
∴四边形ADEM是矩形,
∴AM=DE=1,EM=AD=2,
∴MQ=2-1=1,
∴Rt△EMQ中,EQ=$\sqrt{E{M}^{2}+Q{M}^{2}}$=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
即EG+QG=EG+FH=$\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题主要考查了矩形的判定与性质,全等三角形的判定与性质以及勾股定理的综合应用,解决问题的关键是作辅助线,构造直角三角形、矩形以及全等三角形,根据矩形对边相等及全等三角形对应边相等进行计算求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{5}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com