【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若PA= 6cm,求AC的长.
四、综合题(10分)
【答案】6cm.
【解析】试题分析: 由AB是⊙O的直径和∠BAC=2∠B,根据圆周角定理和三角形内角和定理可得∠BAC=600,等边三角形的判定知△OAC是等边三角形,由PA是⊙O的切线得
Rt△OAP中,PA=6cm,∠AOP=60°,从而应用锐角三角函数即可求得OA=AC的长.
试题解析:∵AB是⊙O直径, ∴∠ACB=90°,
∵∠BAC=2∠B,
∴∠B=30°,∠BAC=60°,
∵OA=OC,
∴△AOC是等边三角形,
∴∠AOC=60°,AC=OA,
∵PA是⊙O切线,
∴∠OAP=90°,
在Rt△OAP中,PA=6cm,∠AOP=60°,
∴OA= =6cm,
∴AC=OA=6cm.
科目:初中数学 来源: 题型:
【题目】在中,,是直线上一点,以为一边在的右侧作,使,,连接.设,.
(1)如图(1),点在线段上移动时,试说明;
(2)如图(2),点在线段的延长线上移动时,探索角与之间的数量关系并证明;
(3)当点在线段的反向延长线上移动时,请在备用图上根据题意画出图形,并猜想角与之间的数量关系是______________,线段、、之间的数量关系是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).三角形AOB中任意一点P(x0,y0)经平移后的对应点为P1(x0+2,y0),并且点A,O,B的对应点分别为点D,E,F.
(1)指出平移的方向和距离;
(2)画出平移后的三角形DEF;
(3)求线段OA在平移过程中扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AG是正八边形ABCDEFGH的一条对角线.
(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;
(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,AE⊥BC于点E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
(1)求证:CD与⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要把残破的轮片复制完整,已知弧上的三点A、B、C.
(1)用尺规作图法找出所在圆的圆心(保留作图痕迹,不写作法);
(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.
(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;
(2)当DFDB=CD2时,求∠CBD的大小;
(3)若AB=2AE,且CD=12,求△BCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各句判定矩形的说法对角线相等的四边形是矩形;对角线互相平分且相等的四边形是矩形;有一个角是直角的四边形是矩形;有四个角是直角的四边形是矩形;四个角都相等的四边形是矩形;对角线相等,且有一个角是直角的四边形是矩形;是正确有几个
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com