精英家教网 > 初中数学 > 题目详情
如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在直线BD上,由B点到D点移动。
(1)当P点移动到离B点多远时,△ABP∽△PDC;
(2)当P点移动到离B多远时,∠APC=90°?
解:(1)由AB=6cm,CD=4cm,BD=14cm,
设BP=xcm,则PD=(14﹣x)cm,
若△ABP∽△PDC,
=
=
变形得:14x﹣x2=24,
即x2﹣14x+24=0,
因式分解得:(x﹣2)(x﹣12)=0,
解得:x1=2,x2=12,
∴BP=2cm或12cm时,△ABP∽△PDC;
若△ABP∽△CDP,=,即=
解得:x=8.4,
∴BP=8.4cm,
综上,BP=2cm或12cm或8.4cm时,△ABP∽△PDC;
(2)若∠APC=90°,则∠APB+∠CPD=90°,
又AB⊥BD,CD⊥BD,
∴∠B=∠D=90°,
∴∠A+∠APB=90°,
∴∠A=∠CPD,
∴△ABP∽△PDC,
由(1)得此时BP=2cm或12cm,则当BP=2cm或12cm时,∠APC=90°。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明
1
AB
+
1
CD
=
1
EF
成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)
1
AB
+
1
CD
=
1
EF
还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在直线BD上,由B点到D点移动,
(1)当P点移动到离B点多远时,△ABP∽△PDC;
(2)当P点移动到离B多远时,∠APC=90°?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BD,BC=BE,∠ABD=∠EBC,则有
△ABC
△ABC
△DBE
△DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD,CD⊥BD,AD=CB.求证:AD∥BC.

查看答案和解析>>

同步练习册答案