精英家教网 > 初中数学 > 题目详情
(2012•遵义)如图,平行四边形ABCD的顶点A、C在双曲线y1=-
k1
x
上,B、D在双曲线y2=
k2
x
上,k1=2k2(k1>0),AB∥y轴,S?ABCD=24,则k1=
8
8
分析:利用平行四边形的性质设A(x,y1)、B(x、y2),根据反比例函数的图象关于原点对称的性可知C(-x,-y1)、D(-x、-y2);然后由反比例函数图象上点的坐标特征,将点A、B的坐标分别代入它们所在的函数图象的解析式,求得y1=-2y2;最后根据S?ABCD=
AB+CD
2
•|2x|=24可以求得k2=y2x=4.
解答:解:在?ABCD中,AB∥CD,AB=CD(平行四边形的对应边平行且相等),故设A(x,y1)、B(x、y2),则根据反比例函数的图象关于原点对称的性质知,C(-x,-y1)、D(-x、-y2).
∵A在双曲线y1=-
k1
x
上,B在双曲线y2=
k2
x
上,
∴x=-
k1
y1
,x=
k2
y2

∴-
k1
y1
=
k2
y2

又∵k1=2k2(k1>0),
∴y1=-2y2
∵S?ABCD=24,
AB+CD
2
•|2x|=6|y2x|=24,
解得,y2x=±4,
∵双曲线y2=
k2
x
位于第一、三象限,
∴k2=4,
∴k1=2k2=8
故答案是:8.
点评:本题考查了反比例函数综合题.根据反比例函数的图象关于原点对称的性质求得点A与点B的纵坐标的数量关系是解答此题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•遵义)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,-
3
).
(1)求抛物线的函数解析式及点A的坐标;
(2)在抛物线上求点P,使S△POA=2S△AOB
(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案