解:(1)HD:GC:EB=1:
:1。
(2)连接AG、AC,
∵△ADC和△AHG都是等腰直角三角形,
∴AD:AC=AH:AG=1:
,∠DAC=∠HAG=45°。
∴∠DAH=∠CAG。∴△DAH∽△CAG。
∴HD:GC=AD:AC=1:
。
∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。
又∵AD=AB,AH=AE,∴△DAH≌△BAE(SAS)。∴HD=EB。
∴HD:GC:EB=1:
:1。
(3)有变化,HD:GC:EB=
。
(1)连接AG,
∵正方形AEGH的顶点E、H在正方形ABCD的边上,
∴∠GAE=∠CAB=45°,AE=AH,AB=AD。
∴A,G,C共线,AB-AE=AD-AH,∴HD=BE。
∵
∴GC=AC-AG=
AB-
AE=
(AB-AE)=
BE。
∴HD:GC:EB=1:
:1。
(2)连接AG、AC,由△ADC和△AHG都是等腰直角三角形,易证得△DAH∽△CAG与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值。
(3)连接AG、AC,
∵矩形AEGH的顶点E、H在矩形ABCD的边上,
DA:AB=HA:AE=m:n,
∴∠ADC=∠AHG=90°,∴△ADC∽△AHG。
∴AD:AC=AH:AG=
,∠DAC=∠HAG。
∴∠DAH=∠CAG。∴△DAH∽△CAG。
∴HD:GC=AD:AC=
。
∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。
∵DA:AB=HA:AE=m:n,∴△ADH∽△ABE。∴DH:BE=AD:AB=m:n。
∴HD:GC:EB=
。