精英家教网 > 初中数学 > 题目详情
(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.
分析:(1)根据关于x的一元二次方程有实根得m≠0,且△≥0从而得到12m+4≥0求得m的取值范围即可;
(2)在(1)的条件下,当m取最小的整数时m=1,于是原方程化为:x2-4x=0,解得即可;
(3)根据当直线l经过原点O时与半圆P有两个交点,即b=0,当直线l与半圆P相切于D点时有一个交点时得到b=2
2
-2
,从而得到当0≤b<2
2
-2
时,直线l与半圆P只有两个交点.
解答:解:(1)∵关于x的一元二次方程有实根∴m≠0,且△≥0
∴△=(2m+2)2-4m(m-1)=12m+4≥0
解得m≥-
1
3

∴当m≥-
1
3
,且 m≠0时此方程有实根;

(2)∵在(1)的条件下,当m取最小的整数,
∴m=1
∴原方程化为:x2-4x=0
x(x-4)=0       
x1=0,x2=4 

(3)解:如图所示:①当直线l经过原点O时与半圆P有两个交点,即b=0
②当直线l与半圆P相切于D点时有一个交点,如图由题意可得Rt△EDP、Rt△ECO是等腰直角三角形,
∵DP=2∴EP=2
2
….(6分)
∴OC=2
2
-2
即b=2
2
-2

∴当0≤b<2
2
-2
时,直线l与半圆P只有两个交点.
点评:本题具有较强的综合性,考查了一元二次方程的根的情况,二次函数与对应的一元二次方程的联系,讨论一次函数与半圆的交点的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•延庆县二模)如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于点D,OD=1,则∠BAC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)如图,等边△ABC中,边长AB=3,点D在线段BC上,点E在射线AC上,点D沿BC方向从B点以每秒1个单位的速度向终点C运动,点E沿AC方向从A点以每秒2个单位的速度运动,当D点停止时E点也停止运动,设运动时间为t秒,若D、E、C三点围成的图形的面积用y来表示,则y与t的图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:如图,直线y=
1
3
x
与双曲线y=
k
x
交于A、B两点,且点A的坐标为(6,m).
(1)求双曲线y=
k
x
的解析式;
(2)点C(n,4)在双曲线y=
k
x
上,求△AOC的面积;
(3)在(2)的条件下,在x轴上找出一点P,使△AOC的面积等于△AOP的面积的三倍.请直接写出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•延庆县二模)阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是
6
6

参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是
2
2
+2
6
(或不化简为
32+16
3
2
2
+2
6
(或不化简为
32+16
3
.(结果可以不化简)

查看答案和解析>>

同步练习册答案