精英家教网 > 初中数学 > 题目详情

【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为21,则下列结论正确的是( )

A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL

【答案】B

【解析】

试题根据相似多边形的性质对各选项进行逐一分析即可.

解:A六边形ABCDEF∽六边形GHIJKL∴∠E=∠K,故本选项错误;

B六边形ABCDEF∽六边形GHIJKL,相似比为21∴BC=2HI,故本选项正确;

C六边形ABCDEF∽六边形GHIJKL,相似比为21六边形ABCDEF的周长=六边形GHIJKL的周长×2,故本选项错误;

D六边形ABCDEF∽六边形GHIJKL,相似比为21∴S六边形ABCDEF=4S六边形GHIJKL,故本选项错误.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图正方形网格中小方格边长为1请你根据所学的知识解决下面问题

1)求网格图中ABC的面积

2)判断ABC是什么形状?并所明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABD与等边ACE,连接BECDBE的延长线与CD交于点F,下列结论:(1BE=CD ;(2AF平分∠EAC 3)∠BFD=60°;(4AF+FD=BF 其中正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市创建绿色发展模范城市,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用生活污水集中处理(下称甲方案)和沿江工厂转型升级(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.

(1)求n的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.

△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.

(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:

①当投掷次数是500时,计算机记录钉尖向上的次数是308,所以钉尖向上的概率是0.616;

②随着实验次数的增加,钉尖向上的频率总在0.618附近摆动,显示出一定的稳定性,可以估计钉尖向上的概率是0.618;

③若再次用计算机模拟实验,则当投掷次数为1000时,钉尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在 Rt△ABC 中,∠C=Rt∠,AC=2BC,AB=5,D、E 分别在 AB、AC 上,且 AE ,DE∥BC.

(1)如图(1),将△ADE 沿射线 DA 方向平移,得到△ A1 D1 E1 ,当 AD1 多大时,四边形 AA1 E1 E 为菱形;

(2)如图(2),将△ADE 绕 A 点顺时针旋转 度( 00 1800 )得到△AD2E2

①连结 CE2 , BD2 ,求:的值;

②连结 CE2 , BE2 若△ ACE2 是直角三角形,求:△ ABE 2 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1∠2,则不一定能使△ABD≌△ACD的条件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,AB是切点,点C是劣弧AB上的一点,若∠P=40°,则∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

查看答案和解析>>

同步练习册答案