精英家教网 > 初中数学 > 题目详情
20.若正多边形的一个内角等于120°,则这个正多边形的边数是6.

分析 多边形的内角和可以表示成(n-2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.

解答 解:解法一:设所求正n边形边数为n,
则120°n=(n-2)•180°,
解得n=6;
解法二:设所求正n边形边数为n,
∵正n边形的每个内角都等于120°,
∴正n边形的每个外角都等于180°-120°=60°.
又因为多边形的外角和为360°,
即60°•n=360°,
∴n=6.
故答案为:6.

点评 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移2个单位得到△A1B1C1,然后将△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1
(1)在网格中画出△A1B1C1和△A2B2C1
(2)计算线段AC在变换到A2C1的过程中扫过区域的面积(重叠部分不重复计算)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在?ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为(  )
A.2和3B.3和2C.4和1D.1和4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,?ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,?ABCD满足矩形条件时,能判断四边形CODE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算
(1)(3.14-π)0-32+|-4|+($\frac{1}{3}$)-2           
(2)(-2a2b34+(-a)8•(2b43

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O.设AB=a,CG=b(a>b).下列4个结论:
①△BCG≌△DCE;②BG⊥DE;③$\frac{DG}{GC}=\frac{GO}{CE}$;④$\frac{{S}_{△DGO}}{{S}_{△EOF}}=\frac{(a-b)^{2}}{{b}^{2}}$;其中结论正确的是①②④(填正确的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则?ABCD的周长为(  )
A.4+2$\sqrt{2}$B.12+6$\sqrt{2}$C.2+2$\sqrt{2}$D.2+$\sqrt{2}$或12+6$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知在平行四边形ABCD中,对角线AC与BD交于点O,且BD⊥CD,若AD=13,CD=5,则BO的长度为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图所示的平面纸能围成正方体盒子,请把与面A垂直的面用图中字母表示出来是B、C、E、F.

查看答案和解析>>

同步练习册答案