精英家教网 > 初中数学 > 题目详情
9、若A、B、C三点在同一条直线上,且AB=5,BC=3,那么AC=(  )
分析:此题注意考虑两种情况:点C在线段AB的延长线上或点C在线段AB上.
解答:解:如图所示,

在图1中,AC=AB+BC=5+3=8;在图2中,AC=AB-BC=5-3=2.
故选D.
点评:此题要结合具体的图形,根据线段的和差进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、(1)如图①,A,B,C三点在一直线上,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,AE交BD于点F,DC交BE于点G.则AE=DC吗?BF=BG吗?请说明理由;
(2)如图②,若A,B,C不在同一直线上,那么这时上述结论成立吗?若成立请证明;
(3)在图①中,若连接F,G,你还能得到什么结论?(写出结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线y=
14
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线数学公式经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

科目:初中数学 来源:2012年江苏省泰州市泰兴市实验中学中考数学二模试卷(解析版) 题型:解答题

如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

科目:初中数学 来源:2013年5月中考数学模拟试卷(12)(解析版) 题型:解答题

如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

同步练习册答案