精英家教网 > 初中数学 > 题目详情
7.利用完全平方公式计算:
(1)($\frac{1}{2}$x-$\frac{2}{3}$y22 
(2)(2x-y+3z)2

分析 (1)根据茶的平方等于平方和减积的二倍,可得答案;
(2)根据加法结合律,可得完全平方公式,根据完全平方公式,可得答案.

解答 解:(1)原式=$\frac{1}{4}$x2-$\frac{2}{3}$xy2+y4
(2)原式=[(2x-y)-3z]2
=(2x-y)2-6z(2x-y)+9z2
=4x2-4xy+y2-12xz+6yz+9z2

点评 本题考查了完全平方公式,利用结合律得出完全平方公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图1,已知⊙O的半径为1,∠NAM的正切值为$\frac{\sqrt{2}}{4}$,AM是⊙O的切线,⊙O从点A开始沿射线AM的方向滚动,其接触点为点A′(即点A′始终是切点).
(1)sin∠∠NAM=$\frac{1}{3}$,cos∠NAM=$\frac{2\sqrt{2}}{3}$;
(2)①如图1,当⊙O的初始位置时,求圆心O到射线AN的距离;
②如图②,当⊙O的圆心在射线AN上时,AA′=2$\sqrt{2}$;
(3)在⊙O的滚动过程,设点A′与点A之间距离为x,圆心O到射线AN的距离为y,求y与x之间的关系,并探究当x分别在什么范围内时,⊙O与射线AN相交、相切、相离?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:$\frac{1}{x+2}$-$\frac{12}{{x}^{3}+8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将?ABCD的边DC延长到点E,使CE=DC,连结AE,交BC于点F.
(1)求证:BF=$\frac{1}{2}$BC;
(2)若∠AFC=2∠D,连结AC,BE,求证:四边形ABEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:
(1)x2-4x=0
(2)x2-4x-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某商场销售某品牌的纯牛奶,平均每天可销售80箱,每箱利润10元,市场调查发现,每箱每降价1元,平均每天可多销售20箱.
(1)如果每箱降价2元,那么平均每天可以销售该品牌的牛奶120箱;
(2)如果要使每天销售该品牌的纯牛奶获得利润980元,则每箱应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)求生产第3档次的产品一天的利润;
(2)若生产第x(其中x为正整数,且1≤x≤10)档次的产品一天的总利润为1170元,求该产品的质量档次.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简或计算:
(1)$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{2}{\sqrt{3}-1}$;(2)2$\sqrt{\frac{2}{3}}$•$\sqrt{2}$-$\sqrt{(2-\sqrt{5})^{2}}$+$\frac{1}{\sqrt{5}+2}$;(3)$\frac{\sqrt{9ab}}{a\sqrt{b}+b\sqrt{a}}$;
(4)$\frac{m}{3}$$\sqrt{9m}$+10m$\sqrt{\frac{m}{25}}$-2m2$\sqrt{\frac{1}{m}}$;(5)$\sqrt{9-2\sqrt{14}}$;(6)$\sqrt{27+10\sqrt{2}}$+$\sqrt{27-10\sqrt{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知在△ABC中,AB=AC,∠BAC=90°,直线PQ是过A点的任意一条直线,BD⊥PQ于D,CE⊥PQ于E.
(1)试说明:△ABD和△CAE全等.
(2)在图(1)的前提条件下,猜想BD、DE、CE三条线段之间的数量关系.(不写证明)
(3)将图(1)中的直线PQ绕点A逆时针旋转一任意角度,经过三角形的内部(不与AB、AC重合)时,上述三条线段之间又有怎样的数量关系,请写出结论,并说明理由.

查看答案和解析>>

同步练习册答案