18£®Èç¹ûÖ±Ïߺã¹ýÒ»¸ö¶¨µãA£¨x0£¬y0£©£¬ÄÇôÕâÌõÖ±Ïß³ÆΪÕâ¸öAµãµÄ¡°ÑÜÉúÖ±Ïß¡±£¬Õâ¸öµã³ÉΪֱÏߵġ°·±Ñܵ㡱
£¨1£©Ð´³öÒ»¸ö¹ýµã£¨1£¬0£©µÄ¡°ÑÜÉúÖ±Ïß¡±µÄ±í´ïʽy=x-1£»
£¨2£©ÒÑÖªÖ±Ïߵıí´ïʽΪy=kx+1-k£¬ÇóÖ±Ïߵġ°·±Ñܵ㡱×ø±ê£»
£¨3£©ÔÚƽÃæÖ±½Ç×ø±êϵÄÚ£¬OΪ×ø±êÔ­µã£¬¹ýB$£¨0£¬\frac{1}{4}£©$µÄ¡°ÑÜÉúÖ±Ïß¡±ÓëxÖá½»ÓÚµãC$£¨-\frac{1}{3}£¬0£©$ÓëÅ×ÎïÏßy=x2½»ÓÚµãM£¬N£¨µãMÔÚµãN×ó²à£©£¬Ö±ÏßMOÉ϶¯µãP×Ý×ø±êΪ-$\frac{1}{4}$£®
¢ÙÇóÖ±ÏßBC±í´ïʽ£»
¢ÚÖ¤Ã÷£ºNPÓëxÖá´¹Ö±£»
£¨4£©¡°ÑÜÉúÖ±Ïß¡±y=kx+kÓë$y=-\frac{1}{2}x+2$´¹Ö±£¬Ö±½Óд³ökÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¡°ÑÜÉúÖ±Ïß¡±¹ý¶¨µã£¨1£¬0£©£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾Ý¡°ÑÜÉúÖ±Ïß¡±¹ý¶¨µã£¬¿ÉÓÃÌØÊâÖµ£¬µÃµ½²»Í¬µÄÖ±Ïߣ¬¸ù¾Ý½â·½³Ì×飬¿ÉµÃ´ð°¸£»
£¨3£©¢Ù¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£¬¢Ú¸ù¾Ý½â·½³Ì×飬¿ÉµÃM¡¢Nµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃOMµÄ½âÎöʽ£¬¸ù¾Ýº¯ÊýÖµ£¬¿ÉµÃPµã×ø±ê£¬¸ù¾Ýºá×ø±êÏàͬµÄÖ±Ïß´¹Ö±ÓÚxÖᣬ¿ÉµÃ´ð°¸£»
£¨4£©¸ù¾Ý¡°ÑÜÉúÖ±Ïß¡±¹ý¶¨µã£¬½â·½³Ì×飬¿ÉµÃ·±ÑܵãµÄ×ø±ê£¬ÔÙ¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃkµÄÖµ£®

½â´ð ½â£º£¨1£©Ð´³öÒ»¸ö¹ýµã£¨1£¬0£©µÄ¡°ÑÜÉúÖ±Ïß¡±µÄ±í´ïʽy=x-1£¬
¹Ê´ð°¸Îª£ºx-1£»
£¨2£©µ±k=1ʱ£¬y=x£¬
µ±k=2ʱ£¬y=2x-1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x}\\{y=2x-1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$£¬
¼´Ö±Ïߵġ°·±Ñܵ㡱×ø±êΪ£¨1£¬1£©£»
£¨3£©¢ÙÉèBCµÄ½âÎöʽΪy=kx+b£¬Í¼Ïó¹ýµãB£¬µãC£¬µÃ
$\left\{\begin{array}{l}{b=\frac{1}{4}}\\{-\frac{1}{3}k+b=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{3}{4}}\\{b=\frac{1}{4}}\end{array}\right.$£¬
¼´BCµÄ½âÎöʽΪy=$\frac{3}{4}$x+$\frac{1}{4}$£»
¢ÚÖ¤Ã÷£ºÁªÁ¢BCÓëÅ×ÎïÏߣ¬µÃ
$\left\{\begin{array}{l}{y=\frac{3}{4}x+\frac{1}{4}}\\{y={x}^{2}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=-\frac{1}{4}}\\{{y}_{1}=\frac{1}{16}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=1}\\{{y}_{2}=1}\end{array}\right.$£¬
¼´M£¨-$\frac{1}{4}$£¬$\frac{1}{16}$£©£¬N£¨1£¬1£©£®
Ö±ÏßOMµÄ½âÎöʽΪy=kx£¬°ÑMµã×ø±ê´úÈ룬µÃ
-$\frac{1}{4}$k=$\frac{1}{16}$£¬½âµÃk=-$\frac{1}{4}$£¬
¼´Ö±ÏßOMµÄ½âÎöʽΪy=-$\frac{1}{4}$x£¬
µ±y=-$\frac{1}{4}$ʱ£¬x=1£¬¼´P£¨1£¬-$\frac{1}{4}$£©£¬
¡ßP¡¢NµãµÄºá×ø±êÏàͬ£¬
¡àPNÓëxÖá´¹Ö±£»
£¨4£©£©¡°ÑÜÉúÖ±Ïß¡±y=kx+kÓë$y=-\frac{1}{2}x+2$´¹Ö±£¬k=2£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÌ⣬£¨1£©ÀûÓÃÁ˹ýÒ»µãµÄÖ±ÏßÓÐÎÞÊýÌõ£¬·ûºÏÌâÒâ¼´¿É£»£¨2£©ÀûÓÃÌØÊâÖµ·¨µÃ³öÖ±Ïß½âÎöʽ£¬ÓÖÀûÓÃÁ˽ⷽ³Ì×飬µÃ³ö´ð°¸£»£¨3£©¢ÙÀûÓôý¶¨ÏµÊýÇóº¯Êý½âÎöʽ£¬¢ÚÀûÓÃÁ˽ⷽ³Ì×éµÃ³öM¡¢NµÄ×ø±ê£¬ÓÖÀûÓô¹Ö±xÖáµÄÖ±ÏßµÄÅж¨£»£¨4£©ÀûÓÃÁ˽ⷽ³Ì×éµÃ³ö·±ÑܵãµÄ×ø±ê£¬ÓÖÀûÓù´¹É¶¨ÀíµÃ³ö´ð°¸£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬D¡¢E·Ö±ðÊÇAC¡¢AB±ßÉϵĵ㣬¡ÏAED=¡ÏC£¬AB=6£¬AD=4£¬AC=5£¬ÔòAE=$\frac{10}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¾­¹ýÔ²ÄÚÒ»µã£¨²»°üÀ¨Ô²ÐÄ£©£¬¿ÉÒÔ×÷Ö±¾¶µÄÌõÊýÊÇ£¨¡¡¡¡£©
A£®2ÌõB£®1ÌõC£®0ÌõD£®ÎÞÊýÌõ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸