精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,直线CD经过⊙O上一点C,AD⊥DC,AC平分∠DAB.
(1)求证:直线CD为⊙O的切线;
(2)若AD=2,AC=
5
,求AB的长.
证明:(1)连OC.
∵AD⊥DC,
∴∠ADC=90°.
∵AC平分∠DAB,
∴∠DAC=∠CAB.
又OC=OA,
∴∠CAB=∠ACO,
∴∠DAC=∠ACO,
∴OCAD.
∴∠OCD=180°-∠ADC=90°.
又OC是⊙O的半径,
∴CD是⊙O的切线.(4分)

(2)连接BC;
∵AB是⊙O的直径,
∴∠ACB=90°.
又∠ADC=90°,
∴∠ADC=∠ACB=90°,
由(1)可知∠DAC=∠CAB,
∴△ACD△ABC.
AC
AB
=
AD
AC
而AD=2AC=
5

5
AB
=
2
5

AB=
5
2

故AB的长为
5
2
.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC交BA的延长线于点F,E为垂足.
(1)求证:DF为⊙O的切线;
(2)若AB=6,DF=4,求FA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,D是
BC
的中点,过点D作AC的延长线的垂线DP,垂足为P.若PD=12,PC=8,求⊙O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是半径为6的⊙O外一点,过点P作⊙O的割线PAB,点C是⊙O上一点,且PC2=PA•PB.求证:
(1)PC是⊙O的切线;
(2)若sin∠ACB=
5
3
,求弦AB的长;
(3)已知在(2)的条件下,点D是劣弧AB的中点,连接CD交AB于E,若AC:BC=1:3,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

设计一把直尺ABC,BC在地面上,AB与地面垂直,并且AB=10cm,移动一个半径不小于10cm的圆形轮子,使轮子紧靠A点,且与BC相切于D点(如图).设计要求在D处的刻度恰好显示这个轮子的半径(以厘米为单位).那么,当BC的长度为1M时,BC上可标出的最大刻度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为(  )
A.34πcm2B.128πcm2C.32πcm2D.16πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于(  )
A.
3
2
B.
2
2
C.
2
3
3
D.
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切,且AB=8,两个圆的半径相差2,那么大圆的直径为(  )
A.3B.5C.6D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2
3
,那么∠AOB等于(  )
A.90°B.100°C.110°D.120°

查看答案和解析>>

同步练习册答案