¶ÔÓÚ¶þ´Îº¯Êýy=x2-3x+2ºÍÒ»´Îº¯Êýy=-2x+4£¬°Ñy=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©³ÆΪÕâÁ½¸öº¯ÊýµÄ¡°ÔÙÉú¶þ´Îº¯Êý¡±£¬ÆäÖÐtÊDz»ÎªÁãµÄʵÊý£¬ÆäͼÏó¼Ç×÷Å×ÎïÏßE£®ÏÖÓеãA£¨2£¬0£©ºÍÅ×ÎïÏßEÉϵĵãB£¨-1£¬n£©£¬ÇëÍê³É£º
£¨1£©µ±t=2ʱ£¬ÇóÅ×ÎïÏßy=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©µÄ¶¥µã×ø±ê£®
£¨2£©ÅжϵãAÊÇ·ñÔÚÅ×ÎïÏßEÉÏ£¬²¢Çó³önµÄÖµ£®
£¨3£©Í¨¹ý£¨2£©ÑÝËã¿ÉÖª£¬¶ÔÓÚtÈ¡Èκβ»ÎªÁãµÄʵÊý£¬Å×ÎïÏßE×ܹý¶¨µã£¬Ð´³ö¶¨µã×ø±ê£®
£¨4£©¶þ´Îº¯Êýy=-3x2+5x+2ÊǶþ´Îº¯Êýy=x2-3x+2ºÍÒ»´Îº¯Êýy=-2x+4µÄÒ»¸ö¡°ÔÙÉú¶þ´Îº¯Êý¡±Âð£¿Èç¹ûÊÇ£¬Çó³ötµÄÖµ£»Èç¹û²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®
½â£º£¨1£©½«t=2´úÈëÅ×ÎïÏßEÖУ¬µÃ£ºy=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©=2x2-4x=2£¨x-1£©2-2£¬
¡à´ËʱÅ×ÎïÏߵĶ¥µã×ø±êΪ£º£¨1£¬-2£©£»
£¨2£©µãAÔÚÅ×ÎïÏßEÉÏ£¬ÀíÓÉÈçÏ£º
¡ß½«x=2´úÈëy=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©£¬µÃ y=0£¬
¡àµãA£¨2£¬0£©ÔÚÅ×ÎïÏßEÉÏ£®
¡ßµãB£¨-1£¬0£©ÔÚÅ×ÎïÏßEÉÏ£¬
¡à½«x=-1´úÈëÅ×ÎïÏßEµÄ½âÎöʽÖУ¬µÃ£ºn=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©=6£®
£¨3£©¡ß½«Å×ÎïÏßEµÄ½âÎöʽչ¿ª£¬µÃ£º
y=t£¨x2-3x+2£©+£¨1-t£©£¨-2x+4£©=t£¨x-2£©£¨x+1£©-2x+4
¡àÅ×ÎïÏßE±Ø¹ý¶¨µã£¨2£¬0£©¡¢£¨-1£¬6£©£»
£¨4£©²»ÊÇ£®
¡ß½«x=-1´úÈëy=-3x2+5x+2£¬µÃy=-6¡Ù6£¬
¡à¶þ´Îº¯Êýy=-3x2+5x+2µÄͼÏó²»¾¹ýµãB£®
¡à¶þ´Îº¯Êýy=-3x2+5x+2²»ÊǶþ´Îº¯Êýy=x2-3x+2ºÍÒ»´Îº¯Êýy=-2x+4µÄÒ»¸ö¡°ÔÙÉú¶þ´Îº¯Êý¡±£®
·ÖÎö£º£¨1£©½«tµÄÖµ´úÈë¡°ÔÙÉú¶þ´Îº¯Êý¡±ÖУ¬Í¨¹ýÅä·½¿ÉµÃµ½¶¥µãµÄ×ø±ê£»
£¨2£©½«µãAµÄ×ø±ê´úÈëÅ×ÎïÏßEÉÏÖ±½Ó½øÐÐÑéÖ¤£»¸ù¾ÝµãBÔÚÅ×ÎïÏßEÉÏ£¬½«¸Ãµã×ø±ê´úÈëÅ×ÎïÏßEµÄ½âÎöʽÖÐÖ±½ÓÇó½â£¬¼´¿ÉµÃµ½nµÄÖµ£»
£¨3£©½«Å×ÎïÏßEÕ¹¿ª£¬È»ºó½«º¬tÖµµÄʽ×ÓÕûºÏµ½Ò»Æð£¬Áî¸Ãʽ×ÓΪ0£¨´ËʱÎÞÂÛtÈ¡ºÎÖµ¶¼²»»á¶Ôº¯ÊýÖµ²úÉúÓ°Ï죩£¬¼´¿ÉÇó³öÕâ¸ö¶¨µãµÄ×ø±ê£»
£¨4£©½«£¨3£©Öеõ½µÄÁ½¸ö¶¨µã×ø±ê´úÈë¶þ´Îº¯Êýy=-3x2+5x+2ÖнøÐÐÑéÖ¤¼´¿É£®
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯Êý×ÛºÏÌ⣬¸ÃÌâͨ¹ýж¨ÒåµÄÐÎʽ¿¼²éÁ˶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌصãµÈ֪ʶ£¬Àí½âÐÂÃû´ÊµÄº¬ÒåÓÈΪ¹Ø¼ü£®