2£®Èçͼ£¬Å×ÎïÏßy=-$\frac{1}{2}$x2+mx+nÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚµãD£¬ÒÑÖªA£¨-1£¬0£©£¬C£¨0£¬2£©£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PCDÊÇÒÔCDΪÑüµÄµÈÑüÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬Ö±½Óд³öPµãµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©µãEÊÇÏ߶ÎBCÉϵÄÒ»¸ö¶¯µã£¬¹ýµãE×÷xÖáµÄ´¹ÏßÓëÅ×ÎïÏßÏཻÓÚµãF£¬µ±µãEÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎCDBFµÄÃæ»ý×î´ó£¿Çó³öËıßÐÎCDBFµÄ×î´óÃæ»ý¼°´ËʱEµãµÄ×ø±ê£®

·ÖÎö £¨1£©Ö±½Ó°ÑAµãºÍCµã×ø±ê´úÈëy=-$\frac{1}{2}$x2+mx+nµÃm¡¢nµÄ·½³Ì×飬Ȼºó½â·½³Ì×éÇó³öm¡¢n¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©ÏÈÀûÓÃÅ×ÎïÏ߶ԳÆÖá·½³ÌÇó³öÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=-$\frac{3}{2}$£¬ÔòD£¨$\frac{3}{2}$£¬0£©£¬ÔòÀûÓù´¹É¶¨Àí¼ÆËã³öCD=$\frac{5}{2}$£¬È»ºó·ÖÀàÌÖÂÛ£ºÈçͼ1£¬µ±CP=CDʱ£¬ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖÊÒ×µÃP1£¨$\frac{3}{2}$£¬4£©£»µ±DP=DCʱ£¬Ò×µÃP2£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£¬P3£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£»
£¨3£©Ïȸù¾ÝÅ×ÎïÏßÓëxÖáµÄ½»µãÎÊÌâÇó³öB£¨4£¬0£©£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬ÀûÓÃÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬ÉèE£¨x£¬-$\frac{1}{2}$x+2£©£¨0¡Üx¡Ü4£©£¬ÔòF£¨x£¬-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£©£¬ÔòFE=-$\frac{1}{2}$x2+2x£¬ÓÉÓÚ¡÷BEFºÍ¡÷CEF¹²µ×±ß£¬¸ßµÄºÍΪ4£¬ÔòS¡÷BCF=S¡÷BEF+S¡÷CEF=$\frac{1}{2}$•4•EF=-x2+4x£¬¼ÓÉÏS¡÷BCD=$\frac{5}{2}$£¬ËùÒÔSËıßÐÎCDBF=S¡÷BCF+S¡÷BCD=-x2+4x+$\frac{5}{2}$£¨0¡Üx¡Ü4£©£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇóËıßÐÎCDBFµÄÃæ»ý×î´ó£¬²¢µÃµ½´ËʱEµã×ø±ê£®

½â´ð ½â£º£¨1£©°ÑA£¨-1£¬0£©£¬C£¨0£¬2£©´úÈëy=-$\frac{1}{2}$x2+mx+nµÃ$\left\{\begin{array}{l}{-\frac{1}{2}-m+n=0}\\{n=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{3}{2}}\\{n=2}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£»
£¨2£©´æÔÚ£®
Å×ÎïÏߵĶԳÆÖáΪֱÏßx=-$\frac{\frac{3}{2}}{2¡Á£¨-\frac{1}{2}£©}$=$\frac{3}{2}$£¬
ÔòD£¨$\frac{3}{2}$£¬0£©£¬
¡àCD=$\sqrt{O{D}^{2}+O{C}^{2}}$=$\sqrt{£¨\frac{3}{2}£©^{2}+{2}^{2}}$=$\frac{5}{2}$£¬
Èçͼ1£¬µ±CP=CDʱ£¬ÔòP1£¨$\frac{3}{2}$£¬4£©£»
µ±DP=DCʱ£¬ÔòP2£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£¬P3£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄPµã×ø±êΪ£¨$\frac{3}{2}$£¬4£©»ò£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©»ò£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£»
£¨3£©µ±y=0ʱ£¬=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=0£¬½âµÃx1=-1£¬x2=4£¬ÔòB£¨4£¬0£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
°ÑB£¨4£¬0£©£¬C£¨0£¬2£©´úÈëµÃ$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
ÉèE£¨x£¬-$\frac{1}{2}$x+2£©£¨0¡Üx¡Ü4£©£¬ÔòF£¨x£¬-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£©£¬
¡àFE=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2-£¨-$\frac{1}{2}$x+2£©=-$\frac{1}{2}$x2+2x£¬
¡ßS¡÷BCF=S¡÷BEF+S¡÷CEF=$\frac{1}{2}$•4•EF=2£¨-$\frac{1}{2}$x2+2x£©=-x2+4x£¬
¶øS¡÷BCD=$\frac{1}{2}$¡Á2¡Á£¨4-$\frac{3}{2}$£©=$\frac{5}{2}$£¬
¡àSËıßÐÎCDBF=S¡÷BCF+S¡÷BCD
=-x2+4x+$\frac{5}{2}$£¨0¡Üx¡Ü4£©£¬
=-£¨x-2£©2+$\frac{13}{2}$
µ±x=2ʱ£¬SËıßÐÎCDBFÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{13}{2}$£¬´ËʱEµã×ø±êΪ£¨2£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢Ò»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍ¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£»Áé»îÓ¦ÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£»Ñ§»áÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑÖª¡÷ABCÊDZ߳¤Îª3cmµÄµÈ±ßÈý½ÇÐΣ¬¶¯µãP£¬Qͬʱ´ÓA£¬BÁ½µã³ö·¢£¬·Ö±ðÑØAB£¬BC·½ÏòÔÈËÙÒƶ¯£¬ËüÃǵÄËٶȶ¼ÊÇ1cm/s£¬µ±µãPµ½´ïµãBʱ£¬P£¬QÁ½µã¶¼Í£Ö¹Ô˶¯£¬ÉèµãPµÄÔ˶¯Ê±¼äΪt£¨s£©£®½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©µ±tΪºÎֵʱ£¬PQ¡ÎAC£¿
£¨2£©µ±tΪºÎֵʱ£¬¡÷PBQÊÇÖ±½ÇÈý½ÇÐΣ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®µ±xΪºÎֵʱ£¬Ê½×Ó$\frac{x}{2}$-3Óëʽ×Ó-$\frac{x}{3}$+1Âú×ãÏÂÃæµÄÌõ¼þ£®
£¨1£©ÏàµÈ£»
£¨2£©»¥ÎªÏà·´Êý£»
£¨3£©Ê½×Ó$\frac{x}{2}$-3±Èʽ×Ó-$\frac{x}{3}$+1µÄֵС1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Éèx=8ÊÇ·½³Ì3x-2=$\frac{x}{4}$+2aµÄ½â£¬ÇÒaÊÇ·½³Ìx-$\frac{1}{3}$[x-$\frac{1}{3}$£¨x-b£©]=$\frac{1}{4}$£¨x+b£©µÄ½â£¬ÇóbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÊýÖáÉϱíʾÕûÊýµÄµã³ÆΪÕûµã£®Ä³ÊýÖáµÄµ¥Î»³¤¶ÈÊÇ1ÀåÃ×£¬Èô½«Ò»¸ù³¤¶ÈΪ24ÀåÃ׵ľ¹÷·ÅÔÚÕâ¸öÊýÖáÉÏ£¬Ôòľ¹÷ÄܸÇסµÄÕûµãµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®22»ò23B£®23»ò24C£®24»ò25D£®25»ò26

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+c½»xÖáÓÚA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã£¬½»yÖáÓÚCµã£¬Å×ÎïÏߵĶ¥µãΪD£¬Á¬½ÓAC¡¢BD²¢ÑÓ³¤½»ÓÚµãE£¬Á¬½ÓBC£¬CD£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ¼°¶¥µãDµÄ×ø±ê£»
£¨2£©¡÷BCDÊÇÖ±½ÇÈý½ÇÐÎÂð£¿ÎªÊ²Ã´£¿
£¨3£©Çó¡ÏEµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÅ×ÎïÏßy=x2+2£¨m+1£©x+4m£¬ËüÓëxÖá·Ö±ð½»ÓÚÔ­µãO×ó²àµÄµãA£¨x1£¬0£©ºÍÓÒ²àµÄµãB£¨x2£¬0£©£®
£¨1£©ÇómµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±|x1|+|x2|=3ʱ£¬ÇóÕâÌõÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèPÊÇ£¨2£©ÖÐÅ×ÎïÏßλÓÚ¶¥µãMÓÒ²àÉϵÄÒ»¸ö¶¯µã£¨º¬¶¥µãM£©£¬QΪxÖáÉϵÄÁíÒ»¸ö¶¯µã£¬Á¬½áPA¡¢PQ£¬µ±¡÷PAQÊÇÒÔPΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬ÇóPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èç¹û¡°¡õ¡Á£¨-$\frac{3}{4}$£©=1¡±£¬Ôò¡õÄÚÓ¦ÌîµÄʵÊýÊÇ-$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®-5µÄ¾ø¶ÔֵΪ5£»-$\frac{2}{3}$µÄµ¹ÊýΪ-$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸