精英家教网 > 初中数学 > 题目详情
如图,在直角坐标平面中,等腰△ABC的顶点A在第一象限,B(2,0),C(4,0),△ABC的面积是3.
(1)若x轴表示水平方向,设从原点O观测点A的仰角为α,求tanα的值;
(2)求过O、A、C三点的抛物线解析式,并写出抛物线的对称轴和顶点坐标.

【答案】分析:(1)作AH⊥BC,垂足为H,由B、C两点坐标及△ABC是等腰三角形,可求OH,再由△ABC的面积求AH,根据正切的定义求tanα的值;
(2)根据抛物线过O(0,0),设抛物线解析式为y=ax2+bx,将A、C两点坐标代入,列方程组求a、b的值,确定抛物线解析式,根据抛物线解析式求抛物线的对称轴和顶点坐标.
解答:解:(1)作AH⊥BC,垂足为H,
∵△ABC是等腰三角形,∴H是BC中点,
∵B(2,0),C(4,0)
∴H(3,0),BC=2,
S△ABC=BC•AH=3,∴AH=3,A(3,3),
tanα==1;

(2)据题意,设抛物线解析式为y=ax2+bx(a≠0)
A(3,3),C(4,0)代入得
解得 
所求解析式为y=-x2+4x,
对称轴直线 x=2,顶点(2,4).
点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,等腰三角形的性质,锐角三角函数的定义.关键是明确锐角三角函数的定义,待定系数法求抛物线解析式的一般方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案