精英家教网 > 初中数学 > 题目详情
已知:如图,平行四边形ABCD中,E、F分别是边AB、CD的中点.

(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;(2)8

试题分析:(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;
(2)由AD=AE,∠A=60°可证得△ADE是等边三角形,即得DE=AD=2,再由(1)知四边形EBFD是平行四边形,根据平行四边形的性质即可求得结果.
(1)在平行四边形ABCD中,AB=CD,AB∥CD.
∵E、F是AB、CD中点,
∴BE=AB,DF=CD.
∴BE=CF.
∵EB∥DF,
∴四边形EBFD是平行四边形;
(2)∵AD=AE,∠A=60°,
∴△ADE是等边三角形.
∴DE=AD=2,
又∵BE=AE=2,        
由(1)知四边形EBFD是平行四边形,
∴四边形EBFD的周长=2(BE+DE)=8.
点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.

(1)图②中阴影部分的正方形的边长是 _________ ;
(2)请用两种不同的方法求图2中阴影部分的面积:
方法1: _________ ;
方法2: _________ ;
(3)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 _________ ;
(4)根据(3)中的等量关系解决如下问题:若m﹣n=﹣5,mn=3,则(m+n)2的值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,五边形ABCDE是由五边形FGHMN经过位似变换得到的,点是位似中心,F、G、H、M、N分别是OA、OB、OC、OD、OE的中点,则五边形ABCDE与五边形FGHMN的面积比是(   )

A.      B.      C.      D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,AB=2,以边AB为直径的⊙O经过点D,且∠DAB=45°.
 
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若以C为圆心的⊙C与⊙O 相切,求⊙C的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为(   )
 
A.5cm2B.6cm2C.7cm2D.8cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.

(1)当点B与点G重合时,求此时t的值;
(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;
(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

18如图①,在梯形ABCD中,ADBC,∠A=60°,动点P从点A出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则线段CD的长度为       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,□ABCD的面积为6,E为BC中点,DE、AC交于F点,的面积为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在菱形ABCD中,BD为对角线,E、F分别是DC、DB的中点,若EF=3,则菱形ABCD
的周长是        

查看答案和解析>>

同步练习册答案