精英家教网 > 初中数学 > 题目详情
已知直线y=2x-2与双曲线图y=
k
x
交于点A(2,y)、B(m,n).
(1)求反比例函数的解析式;
(2)求B点的坐标;
(3)写出反比例函数值大于一次函数值的x的取值范围;
(4)求△AOB的面积.
(1)直线y=2x-2经过点A(2,y),
∴y=2,
∴k=xy=4,
∴y=
4
x


(2)
y=2x-2
y=
4
x

解得x=2,y=2,或x=-1,y=-4,
∵点A(2,2),
∴点B的坐标为(-1,-4);

(3)由图象可以看出当x<-1或0<x<2时,反比例函数值大于一次函数值;

(4)△AOB的面积=
1
2
×|-2|×(|-1|+2)=3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=ax+b(a≠0)与双曲线y=
k
x
(k≠0)交于A、B两点,且点A(2,1),点B的纵坐标为2.
(1)求双曲线的解析式;
(2)求直线的解析式;
(3)求线段AB的长;
(4)问在双曲线上是否存在点C,使△ABC的面积等于3?若存在,求出点C的坐标;若不存在,说明理由(结果不需要分母有理化)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
).
①求直线y=ax+b的关系式;
②据图象写出使反比例函数y=
k
x
的值大于一次函数y=ax+b的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=
k
x
(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为(  )
A.
3
2
B.
4
3
C.2D.
8
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.
(1)求直线和双曲线的函数关系式;
(2)求△CDO(其中O为原点)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正比例函数y=ax(a≠0)的图象与反比例函致y=
k
x
(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正比例函数y=kx和反比例函数y=-
k2+1
x
(k是常数且k≠0)在同一平面直角坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k1
x
的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO△AOB?若存在,求P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=
1
2
x
与双曲线y=
k
x
(k>0)交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线y=
k
x
(k>0)上一点C的纵坐标为8,求△AOC的面积.

查看答案和解析>>

同步练习册答案