某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?
分析:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.
(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;
(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.
解答:解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据题意,得
,
解得
.
答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工.
根据题意,得12(4a+2n)=240,
2a+n=10,
n=10-2a,
又a,n都是正整数,0<n<10,
所以n=8,6,4,2.
即工厂有4种新工人的招聘方案.
①n=8,a=1,即新工人8人,熟练工1人;
②n=6,a=2,即新工人6人,熟练工2人;
③n=4,a=3,即新工人4人,熟练工3人;
④n=2,a=4,即新工人2人,熟练工4人.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.
根据题意,得
W=2000a+1200n=2000a+1200(10-2a)=12000-400a.
要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.
显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
点评:此题要能够理解题意,正确找到等量关系和不等关系,熟练解方程组和根据条件分析不等式中未知数的值.