精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC的边ABAC的外侧分别作等边ABD和等边△ACE,连接DCBE

1)求证:DCBE

2)若BD3BC4 BD⊥BC于点B,请求出△ABC的面积.

【答案】(1)见解析(2)3

【解析】

⑴根据等边三角形的性质得AB=AD,AE=AC,BAD=BDA=DBA=CAE=60°,求出∠BAE=DAC,根据SAS证得 ABE≌△ADC,得到DC=BE.

⑵过点AAHBCH BDBC,得到∠ACB=90°-ABD=90°-60°=30°

2AH=AB,得出AH,BC已知,根据三角形面积即可求出.

1)证明: ∵等边△ABD和等边△ACE

ADABAEAC,∠DAB=∠EAC60°

∴∠DAC=∠EAB

∴△DAC ≌△BAE

DCBE

2 过点AAHBCH

BDBC

∴∠DBC90°

∵等边△ABD

∴∠DBA=60° AB=BD=3

∴∠ABC30°

AHBC

AH

∴△ABC的面积=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,直线abc分别通过ADC三点,且abc.若ab之间的距离是5bc之间的距离是7,则正方形ABCD的面积是(  )

A.70B.74C.144D.148

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是边长为4的正方形,EAB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为(  )

A. 2 B. 2 C. 2 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是(  )

A. 形状相同 B. 周长相等 C. 面积相等 D. 全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,A是反比例函数图象上一点,过点AABy轴于点B,点Px轴上,△ABP的面积为4,则这个反比例函数的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,若分得的两个小三角形中一个三角形为等腰三角形,另一个三角形的三个内角与原来三角形的三个内角分别相等,则称这条线段叫做这个三角形的等角分割线

例如,等腰直角三角形斜边上的高就是这个等腰直角三角形的一条等角分割线

(1)如图1,在△ABC中,D是边BC上一点,若∠B=30°∠BAD=∠C=40°,求证: AD△ABC等角分割线

(2)如图2△ABC中,∠C=90°,∠B=30°;

画出△ABC等角分割线,写出画法并说明理由;

BC=3,求出中画出的等角分割线的长度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割线”CD,直接写出所有符合要求的∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=120°OP平分∠AOB,且OP=3,若点M,N分别在OA,OB上,ΔPMN为等边三角形,则满足上述条件的△PMN有中(

A.1B.2C.3D.3个以上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).

(1)若△BDE是以BE为底的等腰三角形,求t的值;

(2)若△BDE为直角三角形,求t的值;

(3)当S△BCE时,求所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2﹣).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数图象的一部分图象过点A(-30)对称轴为直线x=1,给出四个结论:①c0②若点B(-1.5y1)C(-2.5y2)为函数图象上的两点,则y1y22ab=0 0.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案