精英家教网 > 初中数学 > 题目详情
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当
CE
EA
=1
时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当
CE
EA
=2
时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当
CE
EA
=m
时,EP与EQ满足的数量关系式为
 
,其中m的取值范围是
 
.(直接写出结论,不必证明)
探究二:若
CE
EA
=2
且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.
(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.
精英家教网
分析:探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;
(2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;
(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.
探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;
(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.
解答:精英家教网解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得
BE=CE,∠PBE=∠C,
又∠BEP=∠CEQ,
则△BEP≌△CEQ,得EP=EQ;

(2)作EM⊥AB,EN⊥BC于M,N,
∴∠EMP=∠ENC,
∵∠MEP+∠PEN=∠PEN+∠NEF=90°,
∴∠MEP=∠NEF,
∴△MEP∽△NEQ,
∴EP:EQ=EM:EN=AE:CE=1:2;

(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,
∵在四边形PEQB中,∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°(四边形的内角和是360°),
又∵∠EPB+∠MPE=180°(平角是180°),
∴∠MPE=∠EQN(等量代换),
∴Rt△MEP∽Rt△NEQ(AA),
EP
EQ
=
ME
EN
(两个相似三角形的对应边成比例);
在Rt△AME∽Rt△ENC
CE
EA
=m=
EN
ME

EP
EQ
=1:m=
AE
CE

EP与EQ满足的数量关系式为EP:EQ=1:m,
∴0<m≤2+
6
;(当m>2+
6
时,EF与BC不会相交).

探究二:若AC=30cm,
(1)设EQ=x,则S=
1
4
x2
所以当x=10
2
时,面积最小,是50cm2
当x=10
3
时,面积最大,是75cm2

(2)当x=EB=5
10
时,S=62.5cm2
故当50<S≤62.5时,这样的三角形有2个;
当S=50或62.5<S≤75时,这样的三角形有一个.
点评:熟练运用等腰直角三角形的性质和相似三角形的判定和性质进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,一副三角饭的两个直角顶点重合在一起,
(1)比较大小:∠AOC
=
∠BOD,理由是
同角或等角的余角相等

(2)∠AOD与∠BOC的和为多少度?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已精英家教网知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长
 

(2)图中与线段BE相等的线段是
 

(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)

查看答案和解析>>

科目:初中数学 来源:2013届浙江乐清盐盘一中八年级上学期期中考试数学试卷(解析版) 题型:填空题

如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____

 

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》中考题集(23):1.4 解直角三角形(解析版) 题型:解答题

我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长______;
(2)图中与线段BE相等的线段是______;
(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江乐清盐盘一中八年级上学期期中考试数学试卷(带解析) 题型:填空题

如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____

查看答案和解析>>

同步练习册答案