精英家教网 > 初中数学 > 题目详情

【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.

【答案】
(1)证明:∵AB=DC,

∴AC=DB,

在△AEC和△DFB中

∴△AEC≌△DFB(SAS),

∴BF=EC,∠ACE=∠DBF

∴EC∥BF,

∴四边形BFCE是平行四边形;


(2)4
【解析】(2)当四边形BFCE是菱形时,BE=CE,

∵AD=10,DC=3,AB=CD=3,

∴BC=10﹣3﹣3=4,

∵∠EBD=60°,

∴BE=BC=4,

∴当BE=4 时,四边形BFCE是菱形,

故答案为:4.

(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程(组):

1

2

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初二年级教师对试卷讲评课中学生参与情况进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名初中学生的参与情况,绘制了如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在扇形统计图中,项目主动质疑所在的扇形的圆心角的度数为______度;

(2)请将频数分布直方图补充完整;

(3)如果全市有6000名初三学生,那么在试卷评讲课中,独立思考的初二学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形可以看成是线段平移得到的图形,如图1,将线段AD沿AB的方向平移AB个单位至BC处,就可以得到平行四边形ABCD,或者将线段AB沿AD的方向平移AD个单位至DC处,也可以得到平行四边形ABCD

1)在图2,图3,图4中,给出平行四边形ABCD的顶点ABD的坐标,写出图2,图3,图4中的顶点C的坐标,它们分别是___________________

2)通过对图234的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为Aab),Bcd),Cmn),Def)(如图5)时,则四个顶点的横坐标acme之间的等量关系为______;纵坐标bdnf之间的等量关系为_______(不必证明);

3)如图6,在平面直角坐标系中,已知A(﹣30),B30),C24),则以ABC三个点为顶点的平行四边形的第四个顶点D的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC中,∠BAD=∠EBCADBEF.

(1)试说明 : ∠ABC=∠BFD

(2)若∠ABC=35°,EGADEHBE,求∠HEG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC=90°AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1l2,l3之间的距离为2,则AC的长是( )

A. B. C. 5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.

(1)求证;DE=DF;

(2)若∠A=90°,图中与DE相等的还有哪些线段?(不用说明理由)

查看答案和解析>>

同步练习册答案