精英家教网 > 初中数学 > 题目详情
如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.
(1)求直线l2的函数关系式;
(2)求△ADC的面积;
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
(1)设直线l2的函数关系式为y=kx+b,
∵当x=4时,y=0;当x=3时,y=-
3
2

代入得:
4k+b=0
3k+b=-
3
2

解得:
k=
3
2
b=-6

则直线l2的函数关系式为y=
3
2
x-6;

(2)由直线l1:y=-3x+3,直线l2:y=
3
2
x-6联立求得:C(2,-3),
令直线l1:y=-3x+3,y=0,得到x=1,即D(1,0),
∵AD=OA-OD=4-1=3,C纵坐标的绝对值为3,
∴S△ADC=
1
2
×3×3=
9
2


(3)存在,这样的点有3种情况,如图所示,
过H1作H1P⊥x轴,过C作CQ⊥x轴,
∵四边形ACDH1为平行四边形,
∴△CDQ≌△H1AP,
∴H1P=CQ=3,AP=DQ=OQ-OD=2-1=1,OP=OA-AP=4-1=3,
∴H1(3,3);
∵C(2,-3),AD=3,
∴H2(-1,-3),H3(5,-3),
综上,H点坐标是(3,3),(-1,-3),(5,-3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数图象经过点(-2,5)并且与y轴相交于点P,直线y=-
1
2
x+3与y轴相交于点Q,点Q恰与点P关于x轴对称,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平常对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x+50,y2=2x-22.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)图象中a,b,c的值分别为:a=______,b=______,c=______.
(2)求该药品的稳定价格与稳定需求量.
(3)若供应量和需求量这两种量之间相差3万件,求此时对应的价格.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
2
3
x+2
的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=kx+b与x轴交于点B(2,0),并经过点A(-1,3),求出直线表示的一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

以Rt△AOB的直角边OA、OB为y轴,x轴建立直角坐标系,AO=b,BO=a,(a>b),Q是边OB上的动点,点Q不与B、O重合,点P是AB的中点.
(1)请写出A、B的坐标;
(2)若以点O、P、Q为顶点的三角形与△ABO相似,这时的Q点能有几个,请说明理由并分别求出相应的Q点、P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰直角三角形AOB中腰OA=OB=6,将它放在一个平面直角坐标系内,如图所示,已知点P是AB边上一动点,点Q是OA边上的定点,OQ=4.设点P的坐标是(x,y),△OPQ的面积为S.
(1)求y与x的函数关系式;
(2)求S与x的函数关系式,并求出当S=10时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=(  )
A.-1B.3C.1D.-1或3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b,当x=-4时y的值是9,当x=2时y的值为-3.
(1)求这个函数的解析式;
(2)在直角坐标系内画出这个函数的图象.

查看答案和解析>>

同步练习册答案