精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,对角线AC、BD交于点O,试指出:

(1)图中所有相等的线段;

(2)图中所有相等的角;

(3)图中所有的等腰三角形.

答案:
解析:

  解:(1)相等的线段有:AB=BC=CD=DA,AC=BD,AO=OC=OB=OD.

  (2)相等的角有:∠ABC=∠BCD=∠CDA=∠DAB=∠AOB=∠BOC=∠COD=∠DOA,∠1=∠2=∠3=∠4=∠5=∠6=∠7=∠8.

  (3)等腰三角形有:△ABC、△BCD、△CDA、△DAB、△AOB、△BOC、△COD、△AOD.


提示:

思路与技巧:本题的关键是,要能灵活运用正方形的特征:正方形的四条边相等,正方形的对角线相等且互相平分;正方形的四个角都是直角,对角钱互相垂直,且每条对角线平分一组对角.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案